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Context-dependent outcome encoding in human

reinforcement learning

Stefano Palminteri’®® and Maél Lebreton®>°

A wealth of evidence in perceptual and economic decision-
making research suggests that the subjective assessment of
one option is influenced by the context. A series of studies
provides evidence that the same coding principles apply to
situations where decisions are shaped by past outcomes, that
is, in reinforcement-learning situations. In bandit tasks, human
behavior is explained by models assuming that individuals do
not learn the objective value of an outcome, but rather its
subjective, context-dependent representation. We argue that,
while such outcome context-dependence may be
informationally or ecologically optimal, it concomitantly
undermines the capacity to generalize value-based knowledge
to new contexts — sometimes creating apparent decision
paradoxes.
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Introduction

The view that perceptions, sensations and evaluations
depend on their context was already a central tenant of the
late 19th century’s Gestalt psychology theory [1] and of
early Utility theory [2]. A century later, the pervasiveness
of perceptual illusions and decision-making biases, com-
bined with decades of research in psychology, economics
and neurosciences, consolidated the notion that percep-
tual and economic decisions are highly susceptible to

J
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contextual effects [3]. A significant fraction of contextual
effects seems to result from two fundamental computa-
tions: reference-point centring and range adaptation [4—
6].

In most ecological and real-life situations, decisions are
arguably strongly influenced by the retrospective recol-
lection of past outcomes experienced in similar situations
[7]. Yet, in these experience-based decisions — realm of
the reinforcement-learning framework — the notion of
outcome context-dependence has been mostly neglected,
until recent times [8,9]. Here, we review recent experi-
mental work demonstrating that, in human reinforcement
learning, outcomes are encoded and remembered as a
function of the learning context.

By building on earlier work in perceptual decision-mak-
ing, we consider outcome context-dependence as a man-
ifestation of adaptive coding. Adaptive coding formalizes
the idea that the (neural) representation of a variable is
constrained by its underlying statistical distribution (i.e.,
the context [4,5]). Analogously, in reinforcement learning,
outcome encoding is influenced by the distribution of
outcomes experienced in the same or similar contexts.

Outcome reference point-dependence in
reinforcement learning

Harry Helson (1898-1977)’s adaptation-level (AL) theory
constitutes the first systematic empirical investigation
and theoretical formalization of the reference point-
dependence of perceptual judgments [10]. AL theory
postulates that perceptual features (such as luminosity,
loudness and weight) are evaluated relative to a norm (or
adaptation level) as follows:

\Ii:AS‘i_E

where J; is the judgement of a particular stimulus 7 on a
specific attribute, §; is the objective value of the same
stimulus in the perceptual attribute under consideration,
and § is the norm, namely the arithmetic mean of all
stimuli relevant to defining the context. The norm con-
stitutes a reference point, usually defined as the running
average of similar stimuli recently or simultaneously
sampled, which is used as a point of comparison to judge
the currently experienced stimulus (centring). By import-
ing the AL core intuition into the realm of economic
judgment and decision-making, Kahneman and Tversky
proposed that the utility of an expected outcome does not
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Reference point-dependence in RL: task, results and model variables.

(a) Learning phase contexts (top panel) and typical behavior (bottom panel). Subjects are presented for several trials with two learning contexts:
AB (gain-maximization context) and CD (loss-minimization context). Feedback is probabilistic. Accuracy typically starts at chance level and
progressively increases, reaching a similar plateau in both learning contexts. (b) Transfer phase contexts (top panel) and typical behavior (bottom
panel). After the learning phase, symbols are re-arranged in new combinations. Here, we focus on the most informative combinations (AC and
BC). The hallmark of outcome reference-point dependence is the preference for C over B in the BC comparison (green bar). While these
behavioral signatures observed in both the learning and the transfer phase strikingly contrast with a model assuming objective outcome encoding
(white dots), they are well captured by the REFERENCE model (black dots). Of note, choice pattern in the AC is also informative and indicates that
the centering is only partial. (c) Evolution of the contextual variables (top panel) and subjective outcomes (bottom panel). The top panel illustrates
the canonical temporal evolution of the reference points in the gain and loss contexts. Halfway through the learning phase, the reference points
cross the expect value of the small gain/loss options. The bottom panel illustrates the resulting evolution of the average subjective outcomes for
each option. Symmetrically to the top panel, roughly halfway through the learning phase, the subjective values of the outcomes of the EVys and
EV o5 options start to be subjectively ‘perceived’ as negative and positive, respectively.

reflectits objective value, but rather a sense of gain or loss,
relative to a reference point. Reference-point depen-

dence is therefore an intrinsic feature of prospect theory
(PT [11,12]).

In a recent study, we tested if reference point-depen-
dence affects the way outcomes are encoded (and stored
in memory) in human reinforcement learning [13°°]. Our
behavioral paradigm joins a learning phase with a transfer
phase [14,15]. Initially, during the learning phase, parti-
cipants had to choose between options presented as fixed
pairs of cues that were associated with a probabilistic
outcome. The type of outcome defined the /learning
context: ‘gain’ (i.e. reward maximization) or ‘loss’ (i.e.
punishment minimization) (Figure 1a). In the transfer
phase, participants were required to express their option
preference for each pairwise possible combination,

including hybrid combinations of options from different
learning contexts (Figure 1b). T'wo key behavioral results
emerged: i) during learning phase, accuracy was well
above chance and remarkably similar in the gain and
the loss contexts; ii) option preferences in the transfer
phase violated the strictly monotonic ranking dictated by
their expected values (Figure 1a and b). More specifically,
we found a significant preference for the small-loss option
over the small-gain option. Crucially, these two key
effects violate the predictions of outcome encoding by
a standard Q-learning algorithm. In the learning phase,
the standard model predicts lower performance in the loss
condition: a phenomenon due to an intrinsic asymmetry
in reinforcement rate in the gain and loss contexts (a.k.a.
the punishment learning paradox [16-18]). In the transfer
phase the standard model predicts a strictly monotonic
ranking of option preferences as a function of their
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Box 1 Reinforcement-learning models with outcome context
dependence.

Both the REFERENCE [13°°] and the RANGE [27°°] models build on a
standard Q-learning model, applied to a two-armed bandits task with
complete feedback information [57]. For each pair of cues (i.e. state s),
the REFERENCE model learns a reference point Ref(s), often
referred to as context-value or state-value V(s), which is updated as
follows:

Ref(s) — Ref(s) + aper+ (M - Ref(s))

R(c) and R(u) are the outcome of the chosen and unchosen option
respectively, while ager is a learning rate (0 < ager < 1)° (see Figure 1c
for the temporal evolution of the variable). Ref(s) is then used to
calculate the subjective outcome for each option a as follows:

s(R(a)) = R(a) — Ref(s)

The RANGE model infers two context-level variables: Rmax(s) and
Rmin(s), which are updated as follows:

Rmax(s) — Rmax(s) + apanx(max(R(:)) — Rmax(s)),

ifmax(R(:)) > Rmax
Rmin(s) < Rmin(s) + agan*(mMin(R(:)) — Rmin(s)),

(
ifmin(R(:)) < Rmin
where max(R(:)) and min(R(:)) are respectively the highest and
lowest possible outcomes observed in a given trial, while aga, is a
learning rate (0 < aran < 1) (see Figure 2c for the temporal evolution
of the variable). In this formulation, Rmax(s)/Rmin(s) can only
increase/decrease: it suits only tasks where the range does not
change over time. The model could easily accommodate situations
where the range changes over time, by simply assuming that
Rmax(s) is updated at a smaller rate when the observed outcome is
smaller than the current estimation of Rmax(s) (the opposite holds
true for Rmin(s)) [23]. This variable is then used to calculate the
subjective outcome for each option a as follows®:;
. R(a) — Rmin(s)
~ Rmax(s) — Rmin(s) + 1

s(R(@)

Finally, both models assume that option values Q(:,s) are updated
following the standard update rule:

Q(@,s);y1 = Qa;s); + aax(s(R(@),) — Q(a,s);)

Where a4 is a learning rate (0 < a4 < 1). Both models make deci-
sions with a standard ‘softmax’ decision rule with a fixed tempera-
ture parameter. These models have been shown to satisfactorily
account for the behavioral patterns in both the learning phase and
transfer phase (see Figures 1c and 2c), which falsify several plausible
alternative formulations in reinforcement learning (actor-critic, habit
learning [17,58]) and in neuroeconomics (subjective utility, divisive
normalization [2,59]). As a final remark, even if the two models are not
mathematically nested, the subtraction of Rmin(s) at the numerator
of the range normalization rules indicates that the RANGE model also
implies the possibility that objectively negative outcomes can be
reframed as subjectively positive.

objective values (see Box 1). By following the intuition of
AL and PT theories, we proposed a model that learns the

# Of note, the model proposed by Klein ez 2/, [20°] is a special case of
the REFERENCE model described (when og,r = 1).

? In the denominator ‘+1” is added for computational convenience. It
could be replaced by a free-parameter to account for task-specific
differences, akin to a semi-saturation term governing the efficiency of
the normalization [5].

value of a reference-point and uses it to dynamically
center the outcomes before computing the option-spe-
cific prediction error (I'igure 1¢). We refer to this model as
the REFERENCE model. This model successfully
explains symmetrical gain-loss performance in the learn-
ing phase and the suboptimal preference pattern in the
transfer phase. Moreover, it outperforms the standard Q-
learning model in a broad range of conditions, arguing in
favor of outcome reference-point dependence in rein-
forcement-learning. This result has been replicated not
only in our laboratory, but also in other studies and
featuring different designs, including social learning
[19] and different contingencies, options’ arrangements
and manipulations [20°,21,22].

Outcome range-adaptation in reinforcement
learning

In the late 20th century, Allen Parducci revealed the
presence of context-dependence in affective judgements
of happiness, pleasure and pain, and formalized his find-
ings in the range frequency (RF) theory [23]. Of particular
interest to our review is Parducci’s ‘range principle’,
which describes the subjective judgement of a stimulus
J; as:

Si - Smiﬂ

J; =t S
S max § min

where §; is the objective value of the stimulus /7 in the
perceptual attribute under consideration, while §,,,, and
Suin are the highest and lowest values presented in the
relevant context, bounding the range of possible values.
Essentially, the range principle states that subjective
valuation is adapted to the underlying distribution of
stimuli through a normalization rule. Recently, Kontek
and Lewandoswky translated this idea into description-
based decision-making by proposing the range-depen-
dent utility model as an alternative to PT [24°]. The
model assumes that the prospective valuation of the
expected payoff of lotteries is range-adapted and accounts
for several known behavioral paradoxes [25].

In a couple of recent studies, we tested if the range
principle also applies to outcome encoding and retrospec-
tive retrieval from memory in reinforcement learning
[26°°,27°°]. We built upon the previous behavioral para-
digms to include systematic manipulation of outcome
magnitudes, generating learning contexts with different
outcome ranges. As in the previous study, the learning
phase was followed by a transfer phase, which included
new combinations of options (Figure 2a and b). Again,
two key results emerged from these studies: 1) accuracy
was very similar in the small and the big magnitude
contexts; ii) in the transfer phase, participants’ choice-
elicited preferences were not consistent with the objec-
tive outcome values. Notably, options that were locally
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Figure 2
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Range adaption in RL: task, results and model variables.

(a) Learning phase contexts (top panel) a typical behavior (bottom panel). Subjects are presented for several trials with two learning contexts: AB
(big-magnitude context) and CD (small magnitude context). Feedback is probabilistic. Accuracy typically starts at chance and progressively
increases reaching a quite similar plateau in both learning contexts. (b) Transfer phase contexts (top panel) and typical behavior (bottom panel).
After the learning phase, symbols are re-arranged in new combinations. Here, we focus on the most informative combinations (AC and BC). The
hallmark signature of outcome range adaptation is the preference for C over B in the BC comparison (green bar). While these behavioral
signatures observed in both the learning and the transfer phases strikingly contrast with a model assuming objective outcome encoding (white
dots), they are well captured by the RANGE model (black dots). Of note, choice pattern in the AC is also informative, as it indicates that the range
adaptation is only partial. (c) Evolution of the contextual variables (top panel) and subjective outcomes (bottom panel). The top panel illustrates the
canonical temporal evolution of the ranges in the big and small magnitudes contexts. To the end of the learning phase, the ratio between the
expected value of the options and the range values become similar in the big and small magnitude contexts. Crucially, Ryax and Rni, updates are
conditional of R > Rmax and R < Rmin, respectively (see Box 1). The bottom panel illustrates the evolution of the average subjective outcomes for
each option. Notably, approximately halfway through the learning phase, the subjective value of the outcomes of the EV, s and EV, 75 cross over.

correct in the small magnitude contexts were systemati-
cally preferred to options that were locally incorrect in the
big magnitude contexts, despite their objective expected
values having the opposite ranking. A standard Q-learn-
ing model (with objective outcomes and softmax decision
rule [28]) fails to predict this pattern, because its choice
probabilities (and therefore accuracy) are strongly
affected by the relative magnitudes of the option values.
In line with RF theory, we proposed a model that learns
the range of possible outcomes and uses it to dynamically
rescale the outcomes before computing the option-spe-
cific prediction error (Figure 2¢). This model, referred to
as the RANGE model (see Box 1), satisfactorily captures
the key behavioral effects. In our last study [27°°], we also
modulated the difficulty of the learning phase in two
ways: by manipulating outcome information (partial
versus complete feedback) and by manipulating the task

structure (blocked versus interleaved trials). We found
that outcome range adaptation was more pronounced in
the easiest settings (block design, complete feedback),
consistent with the idea that these manipulations enabled
the participants to identify the context-relevant variables
more easily. Crucially, as predicted by the RANGE
model, this result was accompanied by a reduction in
the subjects’ ability to successfully extrapolate option
values in the transfer phase. This finding is in striking
opposition to the almost universally shared intuition that
reducing task difficulty should lead, if anything, to more
accurate and rational behavior [29,30].

Another recent study investigated choices in a reinforce-
ment learning paradigm featuring repeated choices
between a deterministic (i.e., risk-free) and a probabilistic
(i.e., risky) option. Results showed that the outcome range

www.sciencedirect.com
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matters in subjective outcome values [31°]. Specifically, the
authors convincingly demonstrated that risk preferences
were strongly driven by an increased saliency of the
extreme (i.e., the highestand the lowest possible) outcomes
presented locally, in a given context, rather than being
attached to any specific objective outcome value.

Dependence of irrelevant alternatives in
human reinforcement learning

In the first part of this review, we provided evidence
generalizing two manifestations of contextual influences
to reinforcement learning: reference-point dependence
and range normalization. However, the notion of context
in psychology and economics is much richer, encompassing
many other dimensions [32]. Particularly relevant for eco-
nomic decision-making is the notion of the choice set or
menu. In fact, standard normative theories assume that
decision-makers (should) evaluate options in a way that the
relative probability of choosing, say, option A over B, should
be independent of the presence of a third alternative, say C
(the so-called independence of irrelevant alternatives
axiom, ITA [28]). Despite being intuitive, ITA is quite often
violated in description-based decisions [33]. A recent study
actually demonstrated that such contextual effects induced
by the choice setalso occurinreinforcementlearning [34°°].
"T'he authors designed several behavioral paradigms, where
participants choose between three options whose expected
values were designed to elicit classic violations of IIA.
However, the expected values were to be learned by
trial-and-error. Their results reveal that similar outcomes
‘inhibit’ each other, whereas the most dissimilar (hence
salient) outcomes ‘stand out’. This bottom-up attentional
bias can be captured by a computational model that
decreases the subjective value of an outcome as a function
of the cumulative sum of the perceived similarity between a
given outcome and others concomitantly presented.” As a
result, this study illustrates that contextual effects created
by the choice set also extend to reinforcement learning
scenarios. In these scenarios, contextual effects produce
preference patterns that sometime oppose those observed
in decision among lotteries, thus providing a new instance
of the experience-description gap [8,9,35].

Relation to behavioral economics research

and alternative computational frameworks

We reviewed converging evidence in support of the idea
that the subjective value of an outcome is strongly influ-
enced by the learning context, derived from the distribu-
tion of other and past outcomes [13°°,19,20°26°°
27°%,31°,34°°]. 'This body of work suggests that context
plays a role in virtually all types of decision-making,

7 Of note, while the authors investigated only the complete feedback
case, they argue that their model could be easily extended to the partial
feedback case, by assuming that outcome comparison occurs between
the presented outcome and previous outcomes stored in memory. To
our knowledge, this hypothesis remains to be empirically verified.

possibly via the recycling of similar neural computational
processes and constraints [3-5].

Contextual factors, such as the reference point, are central
to theories of description-based decisions (such as PT).
Although experimental evidence suggests that the refer-
ence point is dynamically updated by the choice history,
the exact algorithm and mechanisms remain to be speci-
fied [36,37], thus weakening the theory [38]. Importing
learning models into the decision-by-description frame-
work and leveraging functional neuroimaging methods
could prove useful in bridging this gap, both at the
normative and descriptive levels [13°°,39].

We also proposed that range adaptation can be imple-
mented via a range normalization mechanism, based on
the learned maximum and minimum possible outcomes
[27°°,31°]. Although reinforcement learning traditionally
relies on behavioral paradigms featuring unidimensional
outcomes (the ‘numeric’ reward), multi-attribute choice
is another canonical situation in which the choice menu
has been shown to be critical [33]. In this context, range
normalization could apply to each attribute separately,
generating and explaining the ‘decoy’ effects observed in
classical description-based decisions with a computation-
ally tractable mechanism [40].

Context effects in choice can be understood through an
alternative computational formalism: the decision-by-
sampling (DbS) framework [41]. The DbS framework
supposes that the subjective value of an option comes
from a series of ordinal comparisons between outcomes
drawn from memory. Since subjective values come from
comparisons with other options, context-effects arise
naturally from the DbS formalism [42]. Furthermore,
DbS could provide a unified framework for description-
based (sampling from distributions) and experience-
based (sampling from memory) decision-making. Partic-
ularly relevant for our treatment, a recent elegant study
showed that DbS concomitantly generates range effects
and achieves efficient coding of information [43°].

What are the functional roles of outcome
context-dependence in reinforcement
learning?

Converging evidence shows that outcome context-depen-
dence systematically induces suboptimal choices when
options are extrapolated beyond their original learning
contexts in the transfer phase (FFigures 1 and 2). This is
particularly striking as similar behavioral findings have
been found in distant species, such as rodents [44] and
birds [45°,46]. Identifying predictable sources of biases is
always puzzling, because evolutionary forces should have,
in principle, negatively selected processes leading to
suboptimal choices. Our work shows that context depen-
dency can, of course, improve learning performance in
specific conditions (loss avoidance, small magnitude).

Current Opinion in Behavioral Sciences 2021, 41:144-151
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However, most of these beneficial learning effects could
be achieved by normalizing value signals at the choice
phase, rather than at the learning and memorization
phase, without bearing the costs of irrational preferences
in the transfer phase. We speculate two possible func-
tional roles for this learning bias. First, outcome context-
dependence could simply result from adaptive and effi-
cient (neural) coding principles, thereby optimizing infor-
mation processing during learning [4,5]. Alternatively,
while context-dependent learning induces suboptimal
choices in our laboratory setting, they may be evolution-
arily rational, meaning that they generate, on average,
optimal performance in the environments where they
evolved — for example, in environments where the
resources are highly volatile [47,48].

Option value learning or direct policy
learning?

A whole spectrum of models exists in the reinforcement
learning framework, ranging from models assuming that
expected values are learned for individual options (such
as Q-learning), to models assuming that choice policies
are learnt without intermediate option values representa-
tions (such as direct policy learning) [49°]. The latter
hypothesis was backed up by evidence from a couple of
studies on humans, where direct policy learning methods
better explained subjects’ choices in complete feedback
tasks, at least in some critical trials [20°,50,51]. However,
while the empirical data reviewed here clearly falsify the
Q-learning’s assumption that option-values are learned on
a context-independent (or objective) scale, they also
reject the equally extreme predictions of direct policy
learning, by showing residual effect of outcome valence
and magnitude in option value preferences (Figures 1 and
2) [13°°,26°°,27°°]. We therefore favour a hybrid scenario
where option-specific values are computed, but based on
subjective outcomes that are encoded in a context-depen-
dent manner.

Open questions

The present demonstration of context-dependent out-
come encoding (FFigures 1 and 2) relies on a combination
of an instrumental learning phase and of a transfer phase
eliciting preference as instrumental choices (e.g. in a
procedural manner). Whereas recent evidence suggests
that the Pavlovian learning system presents similar out-
come encoding constraints [52], future studies should
investigate address whether the same mechanism gen-
eralizes to other learning (Pavlovian, instrumental, goal
directed) and representational (declarative, episodic) sys-
tems [53,54]. Finally, although we focused our review on
situations, where context-dependent reinforcement
learning concurrently benefits the learning phase and
undermines generalization, an exhaustive investigation
of learning and transfer environments could potentially
identify situations where this trade-off can be tipped in
favor of better generalization.

To conclude, investigating the effects of past outcomes
on learning opens up a promising window, not only to
define and formalize contextual effects (Box 2), but also to
understand how the subjective, hedonic perception of
outcomes shapes preferences. Deciphering the mecha-
nisms and properties of reference-point dependence and
range adaptation may also be key to appreciating the

Box 2 multiple definitions of context.

This quote from Parducci clearly illustrates how broadly the term
context can be interpreted [23]:

“The term context refers to a conceptual representation of a set
of events, real or imaginary, determining the dimensional jud-
gement of any particular event” (p. 36).

In this box we clarify the meaning of context in the main studies
reviewed here, building on an analogy to its definition in perceptual
and value-based decision-making [6,60].

In visual cognition, ‘spatial’ context refers to objects simultaneously
presented with a target stimulus. Effects due to the spatial context
do not require the inference of hidden contextual variable because all
relevant information is immediately available. Concering outcome
encoding, the spatial context can be seen as the simultaneous
presentation of multiple outcomes. While this definition of context
becomes ambiguous when the outcome of the chosen option is
displayed alone, it has been used to build models of complete
feedback paradigms [20°,34°7.

‘Temporal’ context refers to objects presented in the (more or less
recent) past. This is how contextual effects are defined in the
REFERENCE and the RANGE models [13°%,27°7]. In this case, out-
come context-dependence is driven by hidden contextual variables
(such as reference point, or the maximum possible reward), whose
values are inferred from the history of past outcomes. This definition
of context applies to both partial and feedback tasks, since it does
not require simultaneous presentation of all feedback information. A
corollary question concerns the time horizon for temporal context
integration. Evidence suggests that contextual variables can be
computed simultaneously over different time scales [61,62].

Both the ‘spatial’ and the ‘temporal’ definitions of context given
above are implicit, that is, they are not attached to any particular cue.
However, evidence suggests that contextual information can be
attached to explicit value-neutral stimuli (e.g. visual cues, back-
ground colors) that can then be used to generalize contextual infor-
mation to new options, without the need to experience the relevant
outcomes [63,64°.

Finally, we mainly focused on external contexts (i.e. derived from
stimuli). However, the internal state of an organism can also con-
tribute to define a context. There is ample evidence that the level of
satiation or the current energetic budget strongly influences memory
and decision-making [65]. Accordingly, the recently developed fra-
mework of homeostatic reinforcement learning postulates that the
subjective value of an outcome is determined by whether a given
outcome moves toward (or away from) a homeostatic set-point
[66,67°], defining an alternative formulation of outcome context-
dependence in reinforcement learning.

It is important to disambiguate the term ‘state’, which has different
meanings in different fields. In ethology and foraging research ‘state’
refers to the internal (physiological) status of the organism [47], while
in animal and reinforcement learning literature, it mainly refers to a
node in a Markov decision-process, roughly synonym of what we
refer to as ‘external context’ [57].
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neurophysiological encoding of learning and decision-
related variables [13°%,39,55°,56].
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