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Abstract

Adoption of improved seed varieties has the potential to lead to substantial pro-
ductivity increases in agriculture. However, only 36 percent of the farmers that grow
an improved maize variety report doing so in Ethiopia. This paper provides the first
causal evidence of the impact of misperception in improved maize varieties on farm-
ers’ production decisions, productivity and profitability. We employ an Instrumental
Variable approach that takes advantage of the roll-out of a governmental program
that increases transparency in the seed sector. We find that farmers who correctly
classify the improved maize variety grown experience large increases in inputs usage
(urea, NPS, labor) and yields, but no statistically significant changes in other agricul-
tural practices or profits. Using machine learning techniques, we develop a model of
interpolation to predict objectively measured varietal identification from farmers’ self-
reported data which provides proof-of-concept towards scalable approaches to obtain
reliable measures of crop varieties and allows us to extend the analysis to the nationally
representative sample.

1 Introduction

It is widely recognized that agriculture in Sub-Saharan Africa has experienced limited pro-

ductivity improvements in the last 60 years compared to other parts of the world such as

Asia and Latin America. Given that the share of employment in agriculture is about 50

percent, this is broadly conceived as a crucial reason why the region has failed to embark on

a path of sustained economic growth and mass poverty is still widespread (Suri and Udry,

2022). Low level of improved technology adoption is often suggested as an explanation for

why agricultural productivity has remained stagnant in Sub-Saharan Africa. Despite the
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availability of seemingly profitable agricultural technologies, the reason why some technolo-

gies are not widely adopted still remains an open question (Macours, 2019). Therefore,

obtaining a better understanding of the constraints on adoption and optimal allocation of

complementary inputs is deemed to be a crucial step to comprehend a major component of

growth (de Janvry and Sadoulet, 2020).

The literature on agricultural technology adoption has investigated different potential con-

straints that farmers may face1, such as credit and risk market inefficiencies (Karlan et al.,

2014); input and output market inefficiencies (Suri, 2011; Shamdasani, 2021; Bold et al.

2017; Ashour et al. 2019; Michelson et al. 2021); behavioural constraints (Duflo, Kre-

mer, Robinson, 2011); and lack of knowledge about profitability and proper use (Foster and

Rosenzweig, 2010). More recent assessments of the state of technology adoption in SSA claim

that, on the one hand the use of inorganic fertilizer and agro-chemicals remains relatively

low on average, while on the other hand governments’ efforts to stimulate modern input use,

especially maize, seem to have had some success. Yet, these inputs are rarely used together

on plots, despite widespread evidence of agronomic synergies (Sheahan and Barrett, 2017).

The availability of novel measurement methods in agricultural surveys has provided the op-

portunity to investigate whether farmers are able to identify correctly the crop variety grown

on their plots as improved. A fast growing literature documents that there are remarkable

discrepancies between farmers’ belief of the seed variety grown and objective measures of

varietal identification. This evidence spans through different countries and crops: for ex-

ample, in a sample of cassava growers in Colombia, Floro et al. 2018 find that farmers

correctly identify the variety grown as improved only on 9.2 percent of their plots. Similar

percentages are also reported in Maredia et al. 2016 for farmers growing cassava in Ghana

(13 percent) and beans in Zambia (9 percent). Finally, Wossen et al. 2019 documents 43

percent of correct varietal identification for cassava farmers in Nigeria and Kowsmoski et al.

2020 report that farmers correctly classify the variety grown on 36 percent of maize plots in

Ethiopia. Despite the importance of investments in complementary inputs to obtain benefits

for improved varieties (Emerick et al. 2016), little attention has been devoted to investigate

the effect of farmers’ mistaken beliefs of the variety grown on decision-making processes and

behaviors.

This paper provides causal evidence on the effect of farmers’ misperception of the maize

varieties used on production decisions, productivity and profitability. Consistently with the

behavioral economics literature (Tversky and Kahneman, 1973; Kahneman and Tversky,

1984; Angner and Loewenstein, 2012), we show that farmers’ act upon their beliefs of the

improved traits of the varieties they grow through the allocation of complementary inputs,

which in turn affects the levels of yields and profits achieved. We rely on the Ethiopia So-

cioeconomic Survey collected in 2018/2019 (ESS4) to recover a measure of farmers’ correct

classification of maize improved varieties, that is whenever the variety grown on one plot

is identified as improved both by the farmer and by the objective measure (DNA finger-

printing). In order to isolate the behavioral adjustment of farmers’ beliefs of the variety

grown, we restrict the sample to farmers who grow an improved maize variety according to

1See Foster and Rosenzweig, 2010, de Janvry et al. 2017, Magruder 2018 for literature reviews.
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the objective measures, but who have either correct or wrong perceptions about it (i.e. true

positive and false negative). We take advantage of administrative data of the roll-out of

districts exposure to a governmental program that favors transparency in the seed supply

chain, the Direct Seed Marketing (DSM). The exogenous variation used in this paper is its

interaction with households’ proximity to the closest urban center, which captures within

district variation in exposure to the program. We argue that longer exposure to the program,

facilitates the creation of an environment where farmers become aware of the variety grown

and are able to experiment dynamically the agricultural investments to make. We find that

correct classification makes farmers adopt more fertilizer per hectare of land in the form of

urea (164 kg/ha increase) and NPS (130 kg/ha increase), employ more hired labor at harvest

and plant less seeds per hectare of land. We do not find evidence of any impact on agricul-

tural practices such as, conservation agriculture, soil and water conservation and agricultural

water management practices. The gain in yields experienced by those who correctly classify

are quite substantial, accounting for a 150 percent increase. Given that both true positives

and false negatives cultivate an improved variety, we can attribute the differences in yields to

the different production decisions. We do not find statistically significant increases in profits,

although the effect is positive and big in size. Additional results suggest that farmers, who

correctly identify the improved variety grown on at least one of their maize plots, are not

systematically reallocating resources to maize cultivation at the expenses of the other crops,

but instead they are crowding-in additional resources. Finally, applying machine learning

techniques we predict the objective measure for varietal identification with 85 percent of

accuracy using farmers’ self-reported data. This allows us to extend the analysis to the

nationally representative sample, thus addressing potential concerns linked to low statistical

power.

We contribute to the literature in multiple ways. First, we take a step back on the ba-

sic assumption common to all the literature related to agricultural technology adoption:

that is, farmers are fully aware of which technology they use. Indeed, not all agricultural

technologies have traits that are easily distinguishable and easy to identify given farmers’

knowledge. Improved seed varieties, in particular, tend to exhibit distinguishable traits

only after germination and even in that case, there may be differences in farmers’ ability to

correctly identify them. Farmers may have the wrong belief when using or, alternatively,

foregoing to use an improved variety. Most of improved varieties perform well relative to

traditional varieties even under unfavorable production conditions, but they express their

full yield potential only with favorable management (Gollin et al. 2005). For this reason,

the mere decision to adopt does not automatically imply achieving the full potential of one

technology, as per agronomists’ estimates. Yield increases predicted in agronomic trails do

not immediately translate into the same gains when applied in the field, since farmers’ be-

havioral adjustment to the innovation tends to lower the expected gains. Thus, correctly

identifying the variety grown should, in principle, allow farmers to make the correct behav-

ioral adjustment in complementary inputs allocation to achieve the yield gains promised by

the technology. Whenever farmers misperceive which technology is being used, an observed

input misallocation might reflect either that farmers are failing to behaviorally adjust to the
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technology or that farmers are successfully optimizing the objective function but based on

wrong beliefs on the true technology. Thus, we contribute to the literature by relaxing this

assumption and providing the first causal evidence of the impact of correct classification of

improved varieties on a number of complementary production decisions, productivity and

profitability. Our findings suggest that farmers are able to obtain higher productivity levels

when they have correct beliefs about the technology used. While we refrain from drawing

conclusions on the optimality of the new inputs allocation, considering the extremely low

levels of adoption of inputs in the sample and the complementarity between inputs use and

improved varieties, the additional amounts of usage deriving from correct classification can

be considered a positive improvement with respect to low national averages.

Second, our instrumental variable, since it is identified by the cumulative length of exposure

to a policy intervention that favors transparency in the seed system, provides suggestive evi-

dence of learning about agricultural technologies and complementary inputs allocation. This

contribution relates to the literature that recognizes farmers own’s learning process among

the factors affecting decisions pertaining to technology choice and inputs allocation. In a

learning-about-productivity model, beliefs about the new technology evolve over time with

experience, thus individuals learn about the overall profitability of a new technology from

experience and compare it to the profitability of the existing technology that is assumed to

be well established (Besley and Case (1993,1994)). However, uncertainty about profitability

of a new technology is not the only challenge that needs to be overcome by farmers. Learning

may also involve acquiring information about how to optimally manage the new technology

(Foster and Rosenzweig (1995)). Agricultural research organization and extension agents

carry out controlled experiments on a new technology and can thus determine the maximal

possible yields and even, for a given set of prices, maximal profitability. What they cannot

necessarily do is provide information on how best to achieve these yields given the specific

characteristics of farmers’ plots (Laajaj et al. 2020). As such, a farmer may have to experi-

ment with a crop on his own land to sort out the correct inputs application. By deciphering

the optimal management of a new technology, the profitability of a technology grows over

time as knowledge accumulates.

Third, we show the possibility to predict objective measures from self-reported data with a

high level of accuracy using machine learning techniques. Although validated gold standard

measures are becoming increasingly available at low cost thanks to technological advance-

ment, national statistical agencies may be unable to easily scale at national level the best

survey methodologies. Nevertheless, accurate and timely crop production statistics are crit-

ical to adequate government policy responses and the availability of reliable measures are

pivotal to establishing credible performance evaluation systems. Therefore, the application

developed in this paper, serves as a proof-of-concept to the use of self-reported data and

objective measures collected on a regionally representative subsample to recover national

figures of adoption.

Finally, we contribute to the wider literature on measurement error in agricultural survey

that investigates the extent of nonclassical measurement error in land size, soil quality, yields

and crop variety identification (Carletto et al., 2013; Gourlay et al., 2017; Ilukor et al., 2017;

Abay et al., 2019; Abay et al. 2021; Kosmowski et al., 2019; Wossen et al., 2019), by provid-
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ing empirical evidence that the implications of measurement error can go beyond statistical

inference.

The rest of the paper is organized as follows. In Section 2, we present the data used in the

analysis and provide an overview of the government’s programs relevant for this analysis

that target the Ethiopian seed sector. In Section 3, we specify the empirical strategy em-

ployed and in Section 4 we discuss the results. In Section 5, we provide empirical evidence

in support of the validity of the exclusion restriction of the instrumental variable approach.

Section 6, we develop a machine learning model to predict objectively measured data from

farmers’ self-report and employ the predictions to extend the analysis to the full nationally

representative sample. Finally, in Section 7 we conclude and acknowledge the limitations of

this study.

2 Data and descriptive statistics

2.1 The Ethiopia Socioeconomic Survey

Our analysis is informed by the Ethiopia Socioeconomic Survey (ESS), a regionally and na-

tionally representative household survey collected by the Ethiopian Central Statistics Agency

(CSA) with the support of the Living Standard Measurement Study (LSMS) of the World

Bank and the Standing Panel on Impact Assessment (SPIA) of the CGIAR. The ESS is im-

plemented every two years: the households in the survey were visited in 2011/2012 (ESS1),

re-visited in 2013/2014 (ESS2), and then re-visited again in 2015/2016 (ESS3). For the

purpose of this analysis, we mainly rely on the wave collected in 2018/19 (ESS4) and we

take advantage of the previous data collections to provide evidence in support of the validity

of the identifying assumptions. The 2018/19 ESS (ESS4) is the first wave of a new panel,

not a follow-up to previous ESS waves. It is a baseline survey for the waves to follow and

it covers all nine states and two cities, Addis Ababa and Dire Dawa. The ESS4 data col-

lection was conducted in 565 EAs, of which 316 are rural and 219 urban. Unlike previous

ESS waves, ESS4 is also representative of regions as well as rural and urban areas. In par-

ticular, the sample of ESS4 was extended to ensure the representativeness of regions that

had previously been aggregated in an “Other region” category: Afar, Benishangul-Gumuz,

Dire Dawa, Gambela, Harari, and Somali. The ESS entails a comprehensive household,

community and agricultural surveys. Farmers’ self-reported measures of agricultural inputs

and outputs are complemented with the collection of objectively measured data of land size,

harvested quantity and crop variety for maize, barley and sorghum, obtained through GPS

measurement, crop-cut and DNA fingerprinting, respectively. The collection of samples for

DNA fingerprinting was restricted to the subsample of most growing regions of maize, barley

and sorghum: Amhara, Dire Dawa, Harar, Oromia, Southern Nations, Nationalities, and

Peoples Region (SNNPR), and Tigray. For each sampled EA, a random sample of a maxi-

mum of 10 fields for each crop plots belonging to 12 ESS households was selected to collect
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the DNA fingerprinting measures2. We combine the data of the DNA fingerprinting sample

with the reference library of maize varieties in Ethiopia that was previously compiled under

a DNA fingerprinting research project conducted by the International Maize and Wheat Im-

provement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR)

and funded by the Bill and Melinda Gates Foundation. The total sample of maize plots with

DNA fingerprinting measures in ESS4 consist of 479 plots cultivated by 423 households 3.

For the purpose of this analysis, we restrict the sample to the plots where farmers either:

• correctly identified the variety grown as improved (true positive);

• grow an improved variety, but wrongly believe to be growing a traditional variety (false

negative).

The analysis is thus informed by a sample of 314 plots cultivated by 289 households.

2.2 Correct classification of improved maize varieties

While the DNA fingerprinting measure was collected for barley, sorghum and maize, we

focus our analysis only on the latter crop. There are at least two reasons for this choice.

On one hand, maize is the most common cereal crop in Ethiopia, cultivated by 9.8 million

farmers (CSA, 2019), it is considered crucial for food security and it is adapted to all the

agroecologies of the country. On the other hand, while improved varieties of sorghum and

barley exhibit low adoption levels, less than 1 and 17.7 percent respectively, maize improved

varieties are widely available, with 62.6 percent of households growing one on at least one

plot, providing meaningful variation for our analysis.

In the context of crop germplasm improvement, CGIAR centers play a central role in

Ethiopia. Relying on its network of genebanks, centers have developed and made avail-

able to the National Agricultural Research System (NARSs) a multitude of sources of

crop germplasm. Improved crop varieties developed through CGIAR research were released

through a collaborative research process with the Ethiopian Institute of Agricultural Re-

search (EIAR). Overall, 54 maize varieties have been released in Ethiopia since 1990, and

34 of them are thought to contain CIMMYT-related germplasm. Two varieties, released

in 1986 and 2001, were created from parent lines from the International Institute of Tropi-

cal Agriculture (IITA). Varieties that contain CGIAR-related germplasm span the diversity

of Ethiopian agroecologies. Ten are open-pollinated varieties (OPVs), and 25 are hybrids.

In the past 20 years ten drought-tolerant varieties and eight quality protein maize (QPM)

varieties have been released. Thus, given the importance of CGIAR’s efforts both in the

development of varieties and their dissemination, we use as a definition of improved variety

if it contains CGIAR-derived germplasm. Based on this definition, our main explanatory

2The 12 ESS households are a subsample of 20 households selected for a wider survey (AgSS). On the
randomly selected 10 plots per crop, priority was given to pure-stand over intercropped plot.

3The original sample of plots was meant to be 506 plot observations. However, due to technical issues
during data collection the final sample that can be merged with the reference library and, household and
community surveys is of 479 plot observations.
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variable of interest is correct classification of improved maize varieties, that is when the

crop grown on one plot is an improved variety by both farmers’ elicitation and DNA finger-

printing analysis. The specific focus on farmers’ correct classification of varieties with an

improved trait and not on landraces is motivated by the fact that they require a specific

management. In particular, agronomists highlight the key complementarity between grow-

ing yield-enhancing varieties and fertilizers application. Moreover, as already mentioned,

tolerance traits to adverse climatic events or pests are becoming more and more relevant

and thus, correct knowledge is key to exploit their full potential, but also to correctly com-

plement the crop choice with the relevant climate-smart practices. Thus, we hypothesize

that farmers’ beliefs of the crop variety grown (improved vis-à-vis traditional) drives the

production decisions on complementary inputs allocation and, consequently, based on the

true variety planted, the level of productivity achieved.

2.3 Seed supply and distribution in Ethiopia

We also rely on administrative data of the roll-out of two governmental programs, namely

the Direct Seed Marketing (DSM) and the Input Voucher Sales System (IVS) 4. DSM was

designed as a mechanism through which both public and private seed producers directly

supply adequate amounts of quality seeds to farmers in convenient places and in a timely

fashion, selling the seed to the farmers directly at competitive prices. The goal of the

program is to ensure increased access and use of improved seeds of high quality by smallholder

farmers (MoA and ATA 2014). Under DSM, seed producers are allowed to sell seed directly

to farmers, in contrast to the Conventional Seed Marketing (CSM) system in which seed

passes from seed producers to regional Bureaus of Agriculture, then to woreda’s5 Agricultural

Offices and finally to Development Agents, cooperative unions, and primary cooperatives,

who, in turn, sell the seed to farmers (see Figure A1). Through the DSM program, private

seed firms are involved in certified seed production, producing mainly hybrid maize seed.

The largest private seed company is Pioneer Hi-Bred plc, which primarily produces hybrid

maize seed (Alemu and Tripp, 2019; Benson et al. 2013). Private seed firms are able to

sell their products directly to farmers through One Stop Shops which are located in the

woreda capital or major urban centers or arrange deliveries to farmers cooperatives. The

DSM program was initially piloted in the Amhara region in 2011, in Oromia and SNNP in

2012 and later scaled-up in Tigray in 2013. The regional governments of Amhara, Oromia,

and SNNP established their own parastatal seed production units—Amhara Seed Enterprise

(ASE), Oromia Seed Enterprise (OSE), and South Seed Enterprise (SSE), respectively—in

2009 and 2010 to provide seed for farmers in their regions, including hybrid maize. At

the same time, a growing number of private seed producers and agricultural cooperatives

emerged to supply hybrid maize seed primarily to the regional Bureaus of Agriculture (BoA)

for distribution through their supply channels to farmers (Mekonen et al., 2019). While

the design did not embed a specific targeting criteria to define the roll-out of the program

4The data was kindly provided by the Ethiopian Agricultural Transformation Agency (ATA).
5Woreda are the third-level of the administrative division of Ethiopia - after zones and the regional states.
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across the country, it emerges from various official sources that regions were chosen based

on their seed production capacity and of the importance of maize as a key commodity. The

regional governments thus, targeted woredas based on their potential in maize production

(Mekonen et al., 2019). In 2018, DSM was expanded to 228 woredas covering 63 percent

of seed supply in the four major regions: 45 percent in Amhara and SNNPR, 56 percent

in Tigray, and 74 percent in Oromia. In March 2018 the MoA enacted Seed Marketing

Guidelines and a Certificate of Competence for the One-Stop-Shop Directives. Currently,

DSM coverage has increased to more than 290 woredas. Crops now operational under DSM

include maize, teff, and wheat. Figure 1 is based on administrative data and shows the

geographical coverage of DSM over time for maize in the sample relevant for this study.

Our empirical strategy relies on the fact that the number of years since the DSM roll-out

Figure 1: Geographical roll-out of Direct Seed Marketing program for maize by year

in one woreda, should increase both the probability that farmers can access improved maize

varieties, while reducing the likelihood of counterfeiting given the fewer steps in the supply

chain in comparison to the CSM system. The length of exposure to the program, paired with

the proximity of households to the closest woreda town, provides the exogenous variation in

farmers’ correct classification of improved maize varieties.

The Input Voucher Sales System is an initiative introduced in ATA’s agenda by the Ministry

of Agriculture with the overall aim to address difficulties that smallholder farmers face in

accessing credit for agricultural inputs such as fertilizer, improved seeds, and labor-saving

tools 6. The program links local microfinance institutions to farmers to issue cash or credit

vouchers that can be used to redeem inputs at nearby cooperative stores. As shown in Figure

2, by 2019 the IVS was rolled-out in Tigray, Amhara, Oromia and SNNP regions. Since the

two programs were designed and implemented by the Ministry of Agriculture to address

6http://www.ata.gov.et/programs/highlighted-deliverables/input-voucher-sales-system-ivs-2/
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different but complementary issues of the Ethiopian agricultural sector, we control for the

IVS presence when exploiting the length of exposure to the DSM program7.

Figure 2: Geographical coverage of Input Voucher Sales System by 2019

2.4 Maize suitability

To relax potential endogeneity concerns regarding the targeting of the roll-out of DSM pro-

gram, we control for maize suitability through the Land Suitability Index at woreda level.

We rely on the data calculated in Zabel et al. (2014) “Global agricultural land resources–a

high-resolution suitability evaluation and its perspectives until 2100 under climate change

conditions”. The methodology applied is a fuzzy logic approach to compute global agri-

cultural suitability to grow the 16 most important food and energy crops according to the

climatic, soil and topographic conditions at a spatial resolution of 30 arc seconds. We use

the results of this approach, taking into account rainfed and irrigated conditions, the start

of the growing cycles and the number of crop cycles, to control for the woreda’s average land

suitability to maize cultivation.

7We also performed the analysis controlling for the presence of the Agricultural Commercialization Cluster
and obtain very similar results which we report in Appendix
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2.5 Descriptive statistics

Table 1 presents summary statistics of the main plot and household level variables used in

the analysis. The first part of the table displays four possible scenarios when comparing

farmers’ self-reported crop variety grown on the plot with the objectively measured data.

Correct classification of improved maize varieties (true positive) only occurs on 22 percent

of the cultivated plots, while in 39 percent of the cases, farmers’ grow an improved variety

but believe to use a traditional variety (false negative). Instead, the opposite is true for 21

percent of the full sample (false positive), and the remaining 18 percent has correct beliefs

about growing a traditional variety (true negative). The rest of the table shows summary

statistics using the sample of analysis: that is, true positive and false negative plots. The

unconditional average length of exposure to DSM is 1.21 years, where the program was

implemented on 34.24 percent of the sample of woredas. We define household’s proximity to

the closest woreda town as the inverse of the self-reported distance in kilometers. In this

way, higher values of the variable indicate that households are closer to the urban center in

comparison to the rest of the sample, where the average distance amounts to 21 kilometers

8. The IVS initiative is implemented in almost the totality of the woredas in the sample

(99 percent). The plot average suitability to maize cultivation is 20 on a scale from 0 (less

suitable) to 100 (highly suitable), where the maximum in the sample is 55. The average

plot area under maize, measured using GPS devices, is 0.11 hectares while the average land

size per household is 0.13 hectares9. Regarding fertilizers usage, farmers apply on average

63 kg of urea, 32 kg of DAP and 32 kg of NPS per hectare of land. Labor figures, calculated

with the assumption that 1 day equals to 8 hours of work, show that farmers dedicate on

average 186 days of family and only 24.5 days of hired labor for each hectare of land during

preparation and planting. While on the other hand, labor used at harvest is on average 82

and 6 days per hectare for family and hired labor, respectively. Farmers plant on average

65.5 kg of maize seed per hectare. Regarding plot characteristics, the sample exhibits limited

variation from the EA mean in terms of potential wetness, elevation and slope. In terms of

agricultural practices, farmers practice on 20 to 40 percent of their plots crop rotation with

a legume, crop residue cover, minimum or zero tillage, terracing and ploughing along the

plot contour, separately. Soil erosion prevention measures are taken on 77 percent of the

plots and 70 percent of farmers employ Soil Water Conservation Practices. Notably, only

2 percent of the plots are irrigated. In order to measure yield, we take advantage of the

harvest measure obtained through crop-cut (dry weighted crops) on 4x4 meters sub-plots.

Every time that is necessary, we adjust the plot area taking into account the percentage

of land dedicated to maize in case of intercropping with other crops. We calculate maize

cultivation profits by assigning the monetary value of the harvested quantity using prices

collected in the first closest market center. The granularity of the data allows to assign

location specific prices by different units of measurement, also non-standard, which captures

the geographical variations in conversion factors. While self-reported quantities of crop sales

8Proximity of household h to the closest woreda towns is given by: Proximityh = max(distanceh) −
distanceh where distanceh is the distance of household h to the closest woreda town.

9This is consistent with what is reported by Desiere and Jolliffe (2018).
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Table 1: Descriptive statistics of selected variables
Mean SE Min Max N Sample

Farmers’ self-reported vs. DNA-fingerprinting

True positive (TP) 0.22 0.02 0 1 479 Full DNA Fingerprint sample
False negative (FN) 0.39 0.03 0 1 479 Full DNA Fingerprint sample
False positive (FP) 0.21 0.02 0 1 479 Full DNA Fingerprint sample
True negative (TN) 0.18 0.02 0 1 479 Full DNA Fingerprint sample

Control variables

Correct identification - CGIAR germplasm
(True positive)

0.36 0.03 0 1 314 Sample of analysis (TP + FN)

Proximity to woreda town (KM) 68.40 1.07 0 89 314 Sample of analysis (TP + FN)
No. years of DSM 1.21 0.13 0 8 314 Sample of analysis (TP + FN)
IVS 0.99 0.01 0 1 314 Sample of analysis (TP + FN)
Suitability Index 20.89 0.94 2 55 314 Sample of analysis (TP + FN)

Input application

Plot area in HA (GPS measure) 0.11 0.01 0 1 314 Sample of analysis (TP + FN)
Total household area under maize cultivation
(HA)

0.13 0.01 0 1 314 Sample of analysis (TP + FN)

Quantity of UREA per HA 63.32 8.89 0 995 314 Sample of analysis (TP + FN)
Quantity of DAP per HA 32.10 6.27 0 435 314 Sample of analysis (TP + FN)
Quantity of NPS per HA 32.39 5.01 0 562 314 Sample of analysis (TP + FN)
Pre-harvest family labor (days/ha) 186.03 14.09 0 927 314 Sample of analysis (TP + FN)
Pre-harvest hired labor (days/ha) 24.48 4.13 0 239 314 Sample of analysis (TP + FN)
Harvest family labor (days/ha) 82.08 6.35 0 459 299 Sample of analysis (TP + FN)
Harvest hired labor (days/ha) 6.41 1.46 0 87 299 Sample of analysis (TP + FN)
Total labor per plot (Days/Ha) 294.38 18.73 0 1,409 314 Sample of analysis (TP + FN)
Seedling rate (KG/Ha) 65.51 9.99 2 2,096 314 Sample of analysis (TP + FN)

Plot characteristics (deviation from EA average)

Potential Wetness Index -0.04 0.08 -5 7 301 Sample of analysis (TP + FN)
Elevation (m) 0.01 0.02 -1 3 301 Sample of analysis (TP + FN)
Slope (percent) -0.09 0.05 -2 4 301 Sample of analysis (TP + FN)

Agricultural Practices

Plot is irrigated 0.02 0.01 0 1 314 Sample of analysis (TP + FN)
Plot prevented from soil erosion 0.77 0.03 0 1 314 Sample of analysis (TP + FN)
River dispersion 0.00 0.00 0 1 314 Sample of analysis (TP + FN)
Motor pump used for irrigation 0.01 0.01 0 1 314 Sample of analysis (TP + FN)
Crop rotation with a legume 0.39 0.03 0 1 314 Sample of analysis (TP + FN)
Crop residue cover - visual aid 0.38 0.03 0 1 312 Sample of analysis (TP + FN)
Minimum tillage 0.31 0.03 0 1 314 Sample of analysis (TP + FN)
Zero tillage 0.20 0.03 0 1 314 Sample of analysis (TP + FN)
Soil Water Conservation practices (SWC) 0.70 0.03 0 1 314 Sample of analysis (TP + FN)
Terracing 0.28 0.03 0 1 314 Sample of analysis (TP + FN)
Water catchments 0.08 0.02 0 1 314 Sample of analysis (TP + FN)
Afforestation 0.03 0.01 0 1 314 Sample of analysis (TP + FN)
Plough along the contour 0.31 0.03 0 1 314 Sample of analysis (TP + FN)
Conservation Agriculture (CA) 0.00 0.00 0 1 314 Sample of analysis (TP + FN)

Productivity and Profitability

Maize yields (Kg/Ha) 2,904.63 303.02 0 2,175,000 314 Sample of analysis (TP + FN)
Household Maize profits (ETB) 2,577.15 328.52 -1,102 1,673,845 289 Sample of analysis (TP + FN)

Notes: Point estimates are weighted sample means.
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are available in the data, we prefer to rely on the objectively collected measures of harvest,

since we found inconsistencies in the break-down of quantities by different uses probably due

to recalling bias or enumerators’ typing error. On the side of costs, we take into consideration

all the expenses related to the cultivation of maize, that is hired labor and inputs purchase,

including transportation costs. As it is common practice, we did not include the costs of

items that were not purchased, such as family labor or quantity of recycled seed, due to

data limitations. Maize yields are on average almost 2.9 tons per hectare while household’s

profits from maize cultivation are around 2577 ETB per year (around 51 USD).

3 Empirical strategy

Improved seed varieties are a key input in agriculture and exhibit strong complementarities

with other inputs allocation, such as fertilizer, labor and, agricultural practices. Moreover,

they are characterized by latent benefits: the signal of the characteristic trait may not always

manifest itself or become stronger only after germination. On one hand, yield-enhancing va-

rieties may fail to deliver higher yields one year due to incorrect complementary inputs

management. On the other, the resistance trait to negative climate related events of a va-

riety will be evident only in case of the occurrence of this scenario. Moreover, as shown by

the literature, knowledge of agricultural technologies accumulates through continuous exper-

imentation in: i) learning how to recognize the improved variety and, ii) the optimal inputs

allocation. For this reason, observing farmers correctly identifying the variety in the current

period is likely correlated with past correct classification. Therefore, inputs allocation in the

current period should not only be determined by today’s current classification, but also and

foremost by the knowledge accumulated through longer experimentation with the improved

variety. For this reason, we focus on farmers who correctly classify the improved maize

variety vis-à-vis farmers who grow improved varieties, but believe to cultivate a traditional

variety. This allows us to test if farmers who correctly classify the improved maize variety

in the year of observation, behave differently in comparison to those who wrongly believe to

grow an improved variety. By identifying correct classification based on past exposure to an

intervention that increases the likelihood of correct identification in previous years, we aim

to provide evidence of the behavioral adjustment deriving from farmers’ learning through

experimentation.

Our main approach is to use correct identification of improved maize variety to explain

production decisions at the plot level. The main specification is therefore:

Yphw = β0 + β1CIphw + β2Phw + β3DSMw + β4IV Sw + β5IV Sw ∗ Phw+

+ β6Suitabilityw + β7Suitabilityw ∗ Phw + αr + ϵphw (1)

Where Yphw is the input allocation observed on plot p of household h in woreda w, CIphw is

improved varieties correct identification on plot p of household h in woreda w, Phw is the log

transformation of the measure of proximity to the nearest woreda town (Km) of household

h residing in woreda w, DSMw is the number of years of exposure to the DSM program of

12



woreda w, IV Sw is the presence of the IVS system in woreda w, Suitabilityw is a measure

of maize suitability in woreda w and, αr are regional fixed effects. Both IVS and Suitability

are interacted with proximity to woreda towns for reasons that we will explain in greater

detail in what follows. The error term ϵphw is clustered at the Enumeration Area (EA) level

which corresponds to the first level of sampling.

As mentioned, the idea we are trying to model is that true positives, i.e. farmers that are

correctly aware of growing improved maize varieties are also better optimizing inputs alloca-

tion in comparison to false negatives. Thus, we define the variable of interest, CI, as taking

value one when the farmer’s self-report of adoption of maize improved varied is confirmed

by the DNA fingerprinting measure on the plot, while zero if farmers report to grow a tradi-

tional variety but the objective measures identifies it as improved. Our main hypothesis is

that farmers growing improved varieties should allocate inputs differently in comparison to

those who believe to grow landraces, but cultivate an improved variety. Indeed, those who

are rightfully aware in the season we observe were also more likely to have had correct per-

ceptions in the past, and hence had a better chance to learn about optimal complementary

inputs allocation and thus, act on their correct beliefs. In this setting, we will focus on a

broad definition of inputs which includes land area, fertilizers application, labor activities,

but also field characteristics, that is elevation, slope and potential wetness of the plot. Since

farmers in our sample cultivate on average 3 maize plots, it is of interest to consider plot

selection based on its characteristics as one dimension among which farmers can optimize

their objective function.

The correct identification of adoption status is potentially endogenous since farmers who

misperceive adopting an improved variety are likely to be different from those who do not

in both observed and unobserved characteristics that affect inputs allocation. Thus, the

ordinary least squares (OLS) estimates of equation (1) would be biased. To solve the endo-

geneity issue, we implement an Instrumental Variable (IV) approach. Hence, we instrument

correct identification implementing the following first-stage:

CIphw = θ0 + θ1Phw + θ2DSMw + θ3Phw ∗DSMw + θ4IV Sw + θ5IV Sw ∗ Phw+

+ θ6Suitabilityw + θ7Suitabilityw ∗ Phw + αr + ηphw (2)

Where Phw ∗DSMw is the interaction between exposure to DSM and proximity to

woreda town and represents our instrumental variable, while the other variables are defined

as above. As already mentioned, the DSM program allows both private and public seed sup-

pliers to market seeds directly to farmers. The competition between different suppliers calls

for transparency in the characteristics of the varieties sold in order to gain market shares

among farmers. Based on this, we could expect that longer exposure to the program, should

facilitate the creation of an environment where farmers become aware of the variety grown

and are able to experiment dynamically the agricultural investments to make. The length of

exposure to DSM program is used in this context as a proxy for learning, both individually

and socially, about the varieties available on the market, the trustworthy actors involved

in the supply chain and their characteristics, which should ultimately increase awareness in

13



inputs allocation. At the same time, farmers that reside in areas that are closer to woreda

towns should have easier access to formal channels of seed supply, ceteris paribus. This is

because, under both the conventional seed marketing system and under DSM, the formal

supply chain unwinds from higher to lower administrative levels where One-stop-shops and

larger markets are available, without relying on informal dealers to perform the last mile in

the distribution. Instead farmers that reside in remote rural areas may find too costly to

travel to urban centers and thus, end up relying in informal channels that are not subject

to quality controls and more likely to engage in counterfeiting than officially recognized sup-

pliers. While both channels, proximity to woreda town and exposure to DSM are expected

to enhance correct classification of improved varieties alone, the direction of the interaction

between the two is not obvious and ultimately an empirical question. We hypothesize that

since the exposure to the DSM program is meant to address potential market failures in the

seed supply chain, the value of developing trustworthy relations should be stronger when

households reside in remote rural areas which are harder to connect and therefore more vul-

nerable to the inefficiencies of the seed sector. On the other hand, the closer the households

is to key centers of seed supply sales, the less we expect the effect of exposure to DSM to

play a role.

From an identification point of view, given the non-random targeting of the DSM program,

we cannot rely on the exposure to DSM alone as a valid instrumental variable. Indeed,

woredas that have accumulated greater exposure to DSM over the years are likely differ-

ent from woredas that did not in terms of land suitability to maize cultivation and/or the

presence of other initiatives promoted by the government (as the DSM), which affect inputs

allocation. Therefore, we exploit the interaction between exposure to DSM and proxim-

ity to woreda towns to identify the exogenous variation that affects inputs allocation only

through correct classification, while controlling for other confounding factors. For this rea-

sons, in both specifications we include a measure of maize suitability and its interaction with

proximity to woreda towns10. In addition, we also control for the presence of other major

agricultural programs in the woreda promoted by the Agricultural Transformation Agency

(ATA) and likely to have followed similar targeting criteria than DSM. In particular, we

focus on the IVS described in Section 2.3. Using administrative data on the geographical

coverage of the program allows us to take into account any difference across woredas derived

from IVS’s activities in terms of input use through access to credit.

Controlling for some the targeting criteria of DSM, that is IVS and maize suitability, con-

ditioning on proximity to woreda town, relaxes the concerns of the direct effect of the IV

to inputs allocation, lending confidence to the validity of our identifying assumptions. We

discuss in greater detail the validity of the exclusion restriction in Section 5.

10This measure was aggregated for the purpose of this analysis at the woreda level.
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4 Results

4.1 First-stage results

Table 2 shows the estimates of the first-stage specification in Equation 2. The coefficient

of the interaction term between proximity to a woreda town and years of exposure to DSM

is negative. This result indicates that, as farmers are more exposed to transparent supply

channels, such as the ones provided by DSM, the less important is the effect of being closer

to a urban center, and vice versa. The coefficient of the instrumental variable is large

and statistically significant at 1 percent level of confidence. Our results show that our

specification explains around 27 percent of the variation in farmers correct classification of

maize varieties.The size of the F-statistic on the instrument is 14.97 which suggests that our

approach should not suffer from the concern of weak instrumental variable.

As we show in Table A1 (Appendix), the results are robust even when considering the

correct classification of a different definition of improved variety, which indicates that the

transparency effect that we are modeling is not specific to the CGIAR-derived germplasm

definition of improved.

Table 2: First-Stage results using correct identification of improved maize varieties - CGIAR-
derived germplasm

Correct identification of im-
proved maize variety

(1)

No. years of DSM * Log(Proximity to
woreda town -KM)

-0.268***

(0.069)

Region FE Yes
Obs. 314
Adjusted R2 0.267

F-statistic 14.970
P-value 0.000

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1. Standard errors (in
parenthesis) clustered at EA level. Control variables included are: No. years of
DSM, Log (Proximity to woreda town (KM)), IVS, IVS*Log(Proximity to woreda
town(KM)), Suitability Index, Suitability Index*Log(Proximity to woreda town KM).

4.2 Inputs use and plot selection

Two-Stage-Least-Square estimates of Equation 1 are reported in Table 3. Farmers who

correctly classify the variety grown as improved allocate more inputs on their plots. Column

(3) shows a large and positive effect of correct classification on the quantity of urea applied

per hectare. On plots cultivated with a correctly classified improved variety, farmers apply

164 kg per hectare more than false negatives. The effect is statistically significant at the 10

percent level. While there is no detectable effect on the quantity of DAP used, the allocation

of NPS is greater on correctly classified plots. In particular, the effect amounts to an increase

of 129.7 kg per hectare where the mean for the plots without correct classification is 13 kg
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per hectare. Both DAP and NPS are blended fertilizers based on nitrogen and phosphorus,

but the latter also contains sulphur. With the introduction of NPS in Ethiopia, farmers have

progressively shifted from DAP to NPS (Balemi et al. 2019), which is consistent with our

results.

Despite the increase in fertilizers use, we do not find any statistically significant effect on

the measures of labor at planting, although the coefficients are positive and big in size.

However, we find a positive and statically significant increase in days of hired labor per

hectare at harvest. The effect is 4.7 additional days of hired labor for plots where the variety

is correctly identified, which corresponds to a 85 percent increase to the (control) average.

As in Beaman et al. (2013), adoption of improved seeds and/or fertilizers is not associated

with a significant change in the amount of family labor applied, but increased expenses on

hired labor. Indeed, our results are in line with the complementarity between improved

varieties and fertilizer use predicated by agronomists, and cultivating an yield-enhancing

variety translates into a greater amount of work at harvest.

Moreover, we test if farmers select different types of plots for the cultivation of improved

seeds, if they know they are improved. Plots where farmers are aware of growing improved

varieties do not exhibit deviation from the community average in terms of potential wetness

and slope, however farmers select plots with slightly lower elevation. Finally and importantly,

the coefficient on seedling rate in column (11) is negative and big in size. This result can

be interpreted as a signal that farmers who correctly classify are confident of the quality of

seed used since it is not unusual to observe farmers increasing the quantity of seed planted

in order to increase the probability of germination of the crop cultivated. We do not find
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any statistically significant effect neither on plot area or on total area under maize

cultivation from correct classification, although the coefficients are positive and big in size.

Although the survey instruments used in this analysis do not provide the exact timing of

fertilizer application, the fact that the different nutrients accomplish different things and

thus they are generally applied at different times in the growing cycle helps speculate on the

investment decisions of farmers who correctly classify. In particular, phosphorous and potas-

sium (NPS) contribute mostly to soil conditioning and roots development, thus it is usually

applied at the time of planting. In contrast, nitrogen – in the form of urea – contributes to

healthy plant and leaf development and therefore is mostly applied later in the season. The

picture that emerges when considering the results on fertilizer applications and seedling rate,

suggests that farmers who correctly classify improved varieties are confident of the quality of

their seeds which makes them willing to make early investments. This is also in line with a

cumulative effect of learning from experimentation over years, which again lends confidence

to the mechanisms at play discussed for the results of the First-Stage.

4.3 Cultivation practices

Departing from inputs allocation, another interesting hypothesis to investigate relates to

whether correct classification of improved varieties grown encourages the adoption of other

agricultural practices. Research over the last decade from CIMMYT shows that improved

maize varieties are compatible with sustainable intensification practices. These promis-

ing findings have motivated efforts such as the Sustainable Intensification of Maize-Legume

Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) program

introduced by CIMMYT in 2010 with the aim to develop sustainable intensification based

on conservation agriculture (CA), among others. Indeed, empirical evidence on the joint

impact of modern seed adoption and conservation agriculture practices shows promising re-

sults on increasing farmers income and reducing production costs (Teklewold et al. 2013).

In particular, conservation agriculture (CA) is based on a set of principles for on-farm nat-

ural resource management—i.e. minimal mechanical disturbance of the soil, permanent soil

cover, and diversification of crops cultivated on any given plot. Farmers can follow a variety

of practices to fulfill these principles. For example, minimum soil disturbance may involve

zero or minimum tillage, ripping, basin planting, or other practices. Farmers may retain

crop residues covering at least 30 percent of the soil or plant cover crops between seasons.

Other practices worth looking at include Soil and Water Conservation (SWC) practices and

Agricultural Water Management practices (AWM). SWC includes terracing, the construc-

tion of small walls along the contours of the land, contour plowing and water catchments.

Motorized and treadle pumps are instead part of AWM. Table 4 shows no impact on correct

identification of improved varieties on the adoption of any of the practices under analysis.

Lack of statistically significant results may be due to the low adoption rates for most of

the practices, except soil erosion prevention and SWC, as also reported in Kosmowski et

al.(2020). The results do not change neither when using an aggregate index of all practices.

However, the estimates of some of the practices although not statistically significant are
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large in size. Indeed, correct classification seems to be positively correlated with

rotation with a crop legume and zero tillage and negatively associated with most crop residue

cover, minimum tillage and Soil and Water Conservation practices.

4.4 Crowd-in vs. reallocation of resources from other plots

After having shown that farmers allocate more inputs on those plots where the improved

variety grown is correctly identified, a natural next question to investigate is whether the

additional amount of resources comes from reallocation from other households’ plots under

crops other than maize. In order to do so, we estimate the 2SLS at the household level -

instead of plot level as before - where we aggregate the outcome measures across all farmers’

plots. The correct identification variable will take value one if farmers correctly identify the

improved variety grown on at least one of their maize cultivated plots. Thus, we compare the

results of these estimations of the aggregate values of inputs use on all maize plots cultivated

versus inputs allocation on all the plots under other crops but maize.

The random sampling framework for the collection of DNA fingerprinting does not

ensure that the objective measure was collected for all maize plots of the household. This

implies that we are not able to establish correct classification for each of the household’s

plot. Thus, in order to conduct this part of the analysis at the household level, we need

to make the assumption that if the variety was correctly classified on at least one of the

household’s plots, then it is likely that this is true also for the others. Indeed, it is arguably

plausible that farmers used the same seed variety on all of their plots. In addition, it should

be noted that in some cases the random procedure selected more than one plot for DNA

fingerprinting for each household and for this reason when we collapse at household level the

number of observations at our disposal decreases in comparison to the plot level analysis.

Results are shown in Table 5: Panel A shows the first-stage results at household level. Our

instrumental variable has a slightly stronger negative effect on correct classification than the

plot level analysis and it still highly statistically significant. The F-statistic is now above

21, lending confidence to the relevance of the instrumental variable. Panel B reports the

results of the 2SLS estimation on maize plots. It shows that the effects discussed in the

previous section are also found when the estimation is done at household level. That is,

households in which farmers correctly identify the maize variety grown on at least one of the

plots use on average more NPS and hired labor per hectare on maize plots, in comparison to

those who do not correctly classify. The effects on urea application are also positive though

no longer significant statistically significant at the household level. The fact that we find

consistent results when conducting the analysis at household level in comparison to the plot

level lends confidence to the validity of the assumption made above regarding the likelihood

that farmers plant the same maize seed on all their plots. In Panel C, we look at what

happens on other crops cultivations when the correct identification condition on maize plots

is met. As we see in column (2), farmers who correctly classify use a higher quantity of

urea even on other plots, although the increase is smaller than the one observed on maize
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plots. We also see any effect on NPS, but there is not a statistically significant increase in

labor use, neither at planting or at harvest. The overall picture provided by these results

seems to suggest that in households where farmers correctly identify the improved variety

grown on at least one of their maize plots, are not systematically reallocating resources to

maize cultivation at the expenses of the other crops. Instead, the findings point towards the

direction of households crowding-in additional resources. Since effects are identified through

the number of years of exposure to DSM, this is in line with a learning mechanism where

farmers dynamically learn how to optimize inputs allocation, starting from maize cultivation

where correct classification happens, and transfer the management practices learned also to

other cultivations. Another potential explanation for the results observed in Panel C is linked

to the exposure to DSM. Although our instrumental variable relies on the length of exposure

to the DSM program specifically for maize, the program was implemented with the exact

same logic also for wheat and teff in the regions of Tigray, SNNP and Oromia. Therefore,

we cannot exclude that part of the observed effects for plots cultivated with crops other than

maize, may be driven by the direct effect of exposure to DSM whenever the program was

implemented in the same woredas for multiple crops.
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4.5 Yield and profits

The results discussed so far indicate that correctly classifying the variety grown on one plot

as improved causes several changes in inputs allocation. Keeping in mind that both groups

considered in this analysis cultivate improved varieties (true positives and false negatives),

it is interesting to test whether inputs allocation changes translate into higher productivity

and profitability levels. Table 6 shows a noticeable increase in yields on plots where there

is correct classification. The effect is statistically significant and represents a 150 percent

increase from the mean of farmers who do not correctly classify the improved variety grown.

This results highlights that utilizing more inputs as a result of correct beliefs, leads to

Table 6: 2SLS results of correct identification on productivity and profitability

IHS:
Yield
(kg/ha)

Household
Profits
(BIRR)

(1) (2)

CI 1.448*** 1,801.139
(0.448) (1,195.526)

Region FE Yes Yes
Obs. 314 289

Control mean 2778.929 2140.99

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1.
Standard errors (in parenthesis) clustered at EA level. IHS=
inverse hyperbolic sine transformation. Plot potential wetness
index, plot elevation and plot slope are expressed as devia-
tion from the EA mean. Control variables included are: No.
years of DSM, Log (Proximity to woreda town (KM)), IVS,
IVS*Log(Proximity to woreda town(KM)), Suitability Index,
Suitability Index*Log(Proximity to woreda town -KM). First-
stage results reported in Table 2 for column(1) and Table 5 for
column(2).

substantial productivity gains. The mere adoption of an improved variety does not auto-

matically translate into higher yields unless it is accompanied by higher fertilizer use, thus

the importance of correct beliefs on the variety adopted and the consequential behavioral

adjustment to it. Indeed, the percentage increase in yield is consistent with the magnitude

of change in fertilizers use. Although, we do not detect any statistically significant effect of

correct classification on household’s profits from maize cultivation, the coefficient is positive

and big in magnitude, as shown in column (2). Suggestively, we could argue that there is

a clear path towards higher profit gains, but we are not able to detect it due to the noisy

measure.

5 Exclusion restriction

The exclusion restriction implied by our instrumental variable approach is that, conditional

on the controls included in the regression, the interaction effect between the duration of

exposure to the DSM program and households’ proximity to woreda towns has no effect on

production decisions, other than their effect through farmers’ correct identification of the
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improved variety grown on their plot. Hence, the obvious potential threat to the identifying

assumption is if DSM was implemented earlier in some woredas rather than in others for

possible unobserved reasons that may affect production decisions differently based on prox-

imity to woreda towns. For example, if DSM was rolled-out earlier in places where demand

for inputs was increasing for those close to woreda towns, but not for those far away. In that

case, the length of exposure to DSM would be directly associated to our outcome variables

independently of the channel of correct classification of the seed variety. Given the targeting

criteria of the roll-out of the program discussed in Section 2.3, we can exclude a random

assignment of DSM to woredas. Nevertheless, we can still provide empirical evidence in

support of the exclusion restriction. In order to do so, we employ two strategies.

First, we perform a placebo test running the reduced form regression using the waves col-

lected prior to ESS4: namely, ESS1 in 2011/2012, ESS2 in 2013/2014 and ESS3 in 2015/2016.

The reduced-form regression at household-level is the following:

Yhw = β0 + β1Phw ∗DSM2019
w + β2Phw + β3DSM2019

w + β4IV Sw+

+ β5IV Sw ∗ Phw + β6Suitabilityw + β7Suitabilityw ∗ Phw + αr + ϵphw (3)

Where the variables are defined as in equation (1) and (2), with DSM2019
w being the length

of exposure to DSM in the year 2019 for woreda w.

All the waves share almost identical questionnaires, with the only exception of quantity

applied of NPS and seeds which were not collected in ESS1 and ESS2. Moreover, although

the quantity of harvested crop was meant to be collected in all the waves, in practice, most

crop/fields do not have self-reported harvest information in ESS111. In addition, the crop-

cut measure, on which we heavily rely for the main results on productivity and profitability,

is only available in ESS4 and for a very limited subsample in the previous waves. The

measurement error that affects the self-reported harvested quantity, while not the crop-cut

measure, makes the two items less comparable. For this reason we cannot use yields or

profits neither for this placebo test or the next strategy performed.

For the purpose of comparison, we restrict the samples of the different waves to the maize

cultivated plots in the regions where the DNA fingerprint sample was collected for ESS4,

i.e. Amhara, Dire Dawa, Harar, Oromia, SNNP, Tigray. The estimates from reduced-form

regression should be proportional to the casual effect of interest, that is the effect of correct

classification on inputs allocation identified through our instrumental variable. Obtaining

similar results in ESS1, ESS2, ESS3 compared to ESS4 would signal that our instrumental

variable conditional on the covariates included is capturing baseline differences between close

by and farther localities in woredas that ended up with greater exposure to DSM in 2019

and those with limited or zero exposure, thus invalidating the exclusion restriction. Table 7

shows the estimates of the placebo test12.

11Source: ESS1 Basic Information Document.
12To ensure that results are comparable across waves, we use the sample of all households growing maize

in the regions where DNA fingerprinting was collected. This is a larger sample for ESS4 in comparison
to the one used in the main analysis, since for the purpose of this exercise we do not need to limit to the
observations where DNA fingerprinting was collected. We report the estimates of the reduced form regression
for the sample of DNA fingerprinting of ESS4 in Table A2 (Appendix).
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Reassuringly, the instrumental variable, that is the interaction between years of

exposure to DSM in 2019 and proximity to woreda towns, does not predict fertilizer use and

hired labor in ESS1, ESS2 and ESS3, while it does in ESS4. Specifically, while we observe

some significant results for the waves prior to ESS4, they do not concern the variables of

interest (urea, NPS and hired labor at harvest) or have opposite sign. Across the different

specifications, the estimates of the ESS3 sample are the closest to the ESS4. This is because

there are only 2 years of difference in terms of exposure to DSM based on proximity to

woreda town between the two waves and thus, it is likely that the learning mechanism starts

to play a role13. Results are consistent when using the household balanced panel sample,

which we report in the Appendix (Table A3)14 showing that the evidence provided is not

driven by sample selection across waves.

Finally, we test whether we can attribute any differential trends in inputs use based on the

instrumental variable. For this purpose, we look at potential differential trends in outcome

variables for the panel of households in woredas targeted after 2016 and those who have

never been targeted by DSM. We take advantage of the panel component of the three waves

prior to ESS4 to estimate the following specification at the household level:

∆Yt,t−1 = β0 + β1Phw ∗DSMESS4 + ϵ (4)

Where ∆Yt,t−1 represents the difference in input use between ESS2 and ESS1, ESS3 and

ESS2 and ESS3 and ESS1 and the independent variable is number of years of DSM exposure

in ESS4, interacted with proximity to woreda town. The results reported in Table 8 show

that pre-trends in inputs allocation are not correlated with the instrumental variable, with

the only exception of family labor at harvest. This provides further evidence in support of

the exclusion restriction.

6 Application on the nationally representative sample

The analysis conducted so far suffers from the limitation of limited sample size, due to the

fact that the DNA fingerprinting measure is available only for a subsample of farmers given

the relatively high costs of collecting this type of data. For this reason, we apply machine

learning (ML) techniques to predict the objective measure of improved maize variety. In this

way, we can extend our analysis to the sample where the DNA fingerprinting measure was not

collected, thus increasing the sample size. The contribution of this exercise is twofold: first,

it is of interest to investigate whether the results we discussed so far are robust when using

the full nationally representative sample of ESS4. Second, given the difficulties in scaling the

DNA fingerprinting data collection and analysis due to logistics and budgetary constraints, it

is worth exploring other techniques that rely on farmers’ self-reported information and could

be used to interpolate more accurate national figures of adoption of improved varieties.

13We acknowledge the fact that the results in Panel A are weaker than the results in Table A2 due to the
sample composition. Indeed, the larger sample size comes at the ”expenses” of including EAs in areas that
are less important for maize production and thus not sampled for DNA fingerprinting.

14The panel dimension mentioned refers to ESS1, ESS2 and ESS3, but not ESS4.
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Table 8: Testing parallel trends development at household level based on IV
Total
maize
area
(HA)

Quantity
of urea
(kg/ha)

Quantity
of DAP
(kg/ha)

Family
labor -
planting -
(days/ha)

Hired
labor -
planting -
(days/ha)

Family
labor -
harvest -
(days/ha)

Hired
labor -
harvest -
(days/ha)

(1) (2) (3) (4) (5) (6) (7)

Panel A: ESS2-ESS1
No. years of DSM *
Log(Proximity to woreda
town -KM)

-0.003 0.442 -1.952 1.489 -0.226 1.372 0.104

(0.008) (3.007) (2.215) (6.755) (1.208) (1.627) (0.121)
Obs. 703 703 703 703 703 703 703

Panel B: ESS3-ESS2
No. years of DSM *
Log(Proximity to woreda
town -KM)

0.002 -0.231 -0.345 -11.540** 1.909 -2.011 0.139

(0.003) (1.481) (0.967) (5.097) (1.799) (1.490) (0.205)
Obs. 703 703 703 703 703 703 703

Panel C: ESS3-ESS1
No. years of DSM *
Log(Proximity to woreda
town -KM)

-0.001 0.210 -2.297 -10.052 1.683 -0.639 0.243

(0.008) (2.668) (2.342) (7.180) (1.265) (1.257) (0.181)
Obs. 703 703 703 703 703 703 703

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1. Standard errors (in parenthesis) clustered at EA level. IHS: inverse hy-
perbolic sine transformation. Household panel sample restricted to maize growing areas: Amhara, Dire Dawa, Harar, Oromia, SNNP,
Tigray regions.

Specifically, using the sample of 491 plot observations15 where both the DNA fingerprinting

measure and the self-reported measure of improved maize variety are available (henceforth

the training set), we try to predict the former measure on the remaining sample of 1490 plots

under maize cultivation (the test set).

As recommended by the literature (Athey, 2018), the first step consists of selecting the best

performing model. In order to do so, we test different machine learning algorithms on the

training set and cross-validate the models to assess their performance in terms of Minimum

Squared Error (MSE), also known as risk. Finally, we choose the best performing model and

predict the variable of interest on the test set. Before performing this procedure, we exclude

from the original training set, 100 observations that we use to estimate the accuracy of our

preferred model. That is, we predict the variable of interest on “unseen” data (i.e. data

not used to train the algorithm) and compare the results with the true value of the DNA

fingerprinting. In this way, we are able to assess the percentage of correctly predicted data

points using the models of choice. Table A4 provides an overview of the different samples

used in the procedure just described.

We take advantage of the SuperLearner package available for R, which provides an easy and

efficient way to perform the training and the prediction processes using a wide library of

machine learning algorithms. We feed the training procedure with 120 covariates, which can

be broadly categorized as follows:

• Self-reported improved seed variety measure.

• Seed characteristics: source, if re-cycled from previous seasons, if purchased and loca-

15To train the algorithm we take advantage of the full sample available which also includes false positive
and true negative. Moreover, we are able to recover 12 additional observations which were excluded due to
missing sampling weights.
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tion of purchase.

• Plot characteristics: land tenure, self-reported plot type and fertility measures, distance

to the household’s dwelling;

• Household characteristics: household size, dependency ratio, credit and insurance ac-

cess, household’s head education;

• Climate and rainfall variables based on GPS plot location;

• Soil fertility measures based from GIS data;

• Farmer’s agricultural practices adopted on the plot.

We pay particular attention to not include any of the outcome variables used so far in the

analysis, such as input application, yields, profits, or any other covariate used in the first-

stage, since we replicate the same specifications using the predicted sample.

For each of the machine learning algorithms, we use a 5-fold cross validation, that is 5

randomly selected sub-samples of the training set, 4 used to train the ML algorithms inde-

pendently and 1 to calculate the MSE. Given the binary nature of the prediction variable, we

rely on the Xg.boost, Ipredbagg and Random Forest learners 16. Table 9 reports the average

MSE based on 5-fold cross-validation. The best performing individual model is Random

Table 9: Machine learning algorithms performance by Mean Square Error

MSE

Algorithm Average s.e. Min Max

Super Learner 0.1327 0.0097 0.1078 0.1463
Discrete SL 0.1336 0.0094 0.1044 0.1537
SL.ipredbagg All 0.1407 0.0087 0.1288 0.1532
SL.xgboost All 0.1465 0.0120 0.1284 0.1608
SL.randomForest 1 screen.glmnet 0.1336 0.0094 0.1044 0.1537

Risk is based on: Mean Squared Error. All risk estimates are based on
5-fold cross-validation.

Forest, with a risk coefficient (MSE) of 0.1336. However, as shown also in Figure A2, Super-

Learner selects as best performing model the ensemble (i.e. the linear combination) of all

the three models. The ensemble method predicts the variable of interest as a weighted linear

combinations of the predictions of the single models, where weights are inversely proportional

to the MSE of the single models. Overall, testing the model on unseen data, we are able

to reach a level of accuracy of 85 percent. Taking into account the classification problem,

the number of variables used and the potential noise of some of the variables, obtaining 85

percent of accuracy is quite high. This is particularly reassuring as it will affect the sta-

tistical power of the next steps. Moreover, given the prediction power obtained relying on

self-reported and GIS data, the results provide evidence that performing DNA fingerprinting

on subsamples can be a reliable way to scale the objective measure at the national level.

16Xg.boost, Random Forest and Ipredbagg are decision-tree-based ensemble machine learning algorithms
that perform well in classification problems.
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In what follows we discuss the results of the first-stage and 2SLS estimations of correct

identification, constructed using the predicted DNA fingerprinting measure on inputs usage.

To assess the validity of the predictions and to disentangle the potential source of error, we

replicate the analysis using the predictions of: i) the original sample used so far 17; ii) the

sample of EAs of the original sample; iii) the sample of regions of the original sample; iv)

the full national ESS4 sample. As in the previous analysis, we replicate the analysis on the

sample true positive (correct identification) and false negative cases.

Table 10 shows the results of the first-stage regression. Estimates in column (1), almost

perfectly mimic the first stage results of the original sample explored in Table 2. All the

coefficients in the regression are of the same sign and magnitude of the core values, if not

completely identical. In particular, the coefficient of the instrumental variable is still neg-

ative, highly statistically significant and slightly bigger in size. The F-statistic for the IV

is 11.05. While we are comforted by the results just discussed, they do not provide an ex-

haustive picture of the model’s performance. This is because we are using the predictions

obtained on the same sample that was used to train the algorithms. Thus, in column (2)-(4),

we depart from this sample and explore the validity of the predictions over “unseen” data.

The estimates are overall robust in all the samples used, however there is variation in the

Table 10: First-stage results using predictions from Machine Learning application

Predicted values of:

Original
sample

Same Eas Same
Regions

Full sample

(1) (2) (3) (4)

No. years of DSM * Log(Proximity to woreda town -KM) -0.271*** -0.262*** -0.175** -0.175**
(0.082) (0.080) (0.086) (0.086)

Region FE Yes Yes Yes Yes
Obs. 313 820 956 1,121
Adjusted R2 0.295 0.214 0.165 0.168

F-statistic for IV 11.05 10.64 4.13 4.13
P-value 0.0013 0.0016 0.0444 0.044

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1. Standard errors (in parenthesis) clustered at EA level. Control variables
included are: No. years of DSM, Log (Proximity to woreda town (KM)), IVS, IVS*Log(Proximity to woreda town(KM)), Suitability
Index, Suitability Index*Log(Proximity to woreda town KM).

relevance of the IV in the different contexts. In column (2), we report the first-stage using the

sample of households from the same EAs, but including also plots that were not randomly

selected for the DNA fingerprinting measure: the coefficient of the IV is slightly smaller

and statistically significant, which is also reflected in a smaller F-statistics. Estimates on

the sample of households from the same regions of the DNA fingerprinting subsample and

the full national sample are reported in column (3) and (4), respectively. The values of the

F-statistic for IV are 4.13, which suggest that the instrument is now less relevant than it

was in the original sample. There are at least two potential motivations for why this is

the case. The woredas and regions included in column (3) and (4) are notably either areas

were maize is much less relevant or barely exposed to the DSM program. Indeed, DSM was

not implemented in the regions of Beninshangul Gumuz, Gambela and Afar, which are the

regions included in column (4) but that were not surveyed in the original sample.

17In this Section, we refer to “original sample” as the sample of plot level observations used in the main
analysis containing both the self-reported and DNA fingerprinting data.
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In Table 11, following the same logic, we report the results of the 2SLS. As shown in

Panel A, the results obtained from the predictions are almost identical to the original sample

discussed in the previous sections (Table 3). In particular, the effect of correct identification

on quantity of urea and NPS are qualitatively the same in size in Panel A, than previous

results and exhibit the same level of significance. Moving to Panel B, the effect of correct

identified varieties on quantity of urea are larger in magnitude, and highly statistically signif-

icant. The effect of correct classification on hired labor at harvest is still statically significant

and close to the original estimate. In Panel C and D, most of the results remain consistent

with the original results, with a few notable exceptions: indeed, the seedling rate is no longer

statistically significant and positive in sign. However, since we are by design adding woredas

(and regions) where maize is much less important and where only few woredas were exposed

to the DSM, both the predictions and the first-stage become less relevant, thus affecting the

results in Panel C and D.

Overall, the application conducted using machine learning techniques supports the robust-

ness of our results and the discussed mechanisms behind them. Moreover, it provides empiri-

cal evidence of the possibility of interpolation of DNA fingerprint measures from self-reported

data with only a 15 percent of error in predictions.
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7 Concluding remarks

The analysis conducted in this paper provides causal evidence of the impact of correct clas-

sification of improved maize varieties on inputs allocation, agricultural practices, yields and

profits. We find that farmers who correctly classify the variety grown as improved use more

fertilizers and hired labor at harvest, while we do not find any detectable changes in agri-

cultural practices in comparison to farmers who have wrong beliefs of the variety planted.

We observe large productivity increases when there is correct identification, however we are

not able to detect the potential gains in profitability. Given that we identify the effect of

correct classification through the cumulative length of exposure to a program that favors

transparency in the seed sector, we argue that the underlying mechanism is based on farm-

ers dynamically learning about the optimal management of the agricultural technology used

in the past seasons.

There are a few lessons that we can draw from this analysis. First, misperception in which

agricultural technology is used has testable implications for farmers’ production decisions.

We argue that wrong beliefs on the improved variety grown can be a factor influencing

(mis)allocation of agricultural resources. Second, since the exogenous variation exploited in

this analysis relies on the cumulative effect of reducing misperception, it provides sugges-

tive evidence on the dynamic nature of farmers’ learning. Thus, optimal management of

agricultural technologies and complementary inputs should be conceived as the outcome of

continuous experimentation where misperceptions may affect the learning process. Third,

we contribute to the research agenda on agricultural data measurement, by recognizing not

only the contribution of objectively measured data, but also and foremost the importance

of collecting and using farmers’ self-reported measures in specific contexts. We argue that

objective measures in agricultural surveys should not be considered the panacea to all ob-

served inefficiencies. Instead, as we show here, self-reported data offer a window to farmers’

perceptions that can provide insights to the inner causes of observed behaviors.

The quasi-experimental nature of the empirical strategy suffers from several limitations to

date. First, the temporarily cross-section nature of the ESS4 does not allow for comparison

within farms across years, which inhibits an in-depth investigation of the dynamic adoption

process. Second, the estimated effect is a Local Average Treatment Effect that identifies

the impact of correct classification only for the population of compliers. That is, the effect

of correct classification for farmers who are exposed to DSM program conditional on their

distance to urban centers and end up identifying the variety grown as improved when this

is the case.

While the literature has so far neglected the role of farmers’ misperception in which agri-

cultural technology is used, this paper provides empirical evidence of the large magnitude

of the effects of correcting misperception. We argue that the interest in improved seed va-

rieties and optimal inputs allocation is particularly relevant in light of climate change. The

overall impacts of climate change on agriculture are expected to be negative due to climate

variability and the frequency of extreme climatic events, such as droughts and flooding, that

affect precipitation and, higher temperatures that impact yields in a negative way and fa-

32



vor the growth of weeds and the proliferation of crop pests (Nelson et al., 2009). Because

agricultural production remains the main source of income for most rural communities in

low and middle income countries, adaptation of the agricultural sector to the adverse effects

of climate change is imperative for protecting and improving the livelihoods of the poor

and ensuring food security (Lemessa et al., 2019). For this reasons, national, regional and

international plant breeding efforts involved multilocational trials with the goal to develop

crop varieties that are resistant to climate-related phenomena and more efficient in their use

of resources to reduce the impact on the agricultural ecosystem and the wider environment.

Resistance to drought, salinity, flooding, diseases and pest are the most common climate-

related traits for which crop varieties are bred (Lemessa et al., 2019). Farmers’ accurate

knowledge of the variety used is pivotal to take advantage of the tolerance traits. For this

reason, farmers’ correct classification of improved varieties acquires new meaning especially

in the case of varieties with tolerance traits, but more and foremost for the complementarity

between those and climate-smart practices in the pursue of climate adaptation.
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A Appendix

A.1 Figures

Figure A1: Seed demand assessment and supply flow through the Conventional Seed Mar-
keting and Direct Seed Marketing systems in Ethiopia

Source: IFPRI, 2015. CSM = conventional seed marketing; DSM = direct seed marketing; MoA =

Ministry of Agriculture (national level); SE = seed enterprises; ARI = agricultural research institutes; BoA

= Bureau of Agriculture (region level); RSE = regional seed enterprises (regional government); RARI =

regional agricultural research institutes; WoA = Woreda Office of Agriculture; DA = Development Agent

(farm-level agricultural extension agent); FPC = farmers’ primary cooperative; FCU = farmers’

cooperative union; PSD = private seed dealer.

Figure A2: 5-fold CV Risk Estimate
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A.2 Tables

Table A1: First-Stage results using correct identification of improved varieties - Exotic
germplasm

Correct identification of im-
proved maize variety - Exotic

(1)

No. years of DSM * Log(Proximity to
woreda town -KM)

-0.231***

(0.056)

Region FE Yes
Obs. 379
Adjusted R2 0.285

F-statistic 16.790
P-value 0.000

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1. Standard errors (in
parenthesis) clustered at EA level. Control variables included are: No. years of
DSM, Log (Proximity to woreda town (KM)), IVS, IVS*Log(Proximity to woreda
town(KM)), Suitability Index, Suitability Index*Log(Proximity to woreda town KM).
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Table A4: Datasets and observations used for machine learning

Datasets Obs

Train short 391
validation 100

Test 1460

43



A.3 Agricultural Commercialization Cluster

The Agricultural Commercialization Cluster is an initiative introduced in ATA’s agenda by

the Ministry of Agriculture with the overall aim to address the systemic bottlenecks in the

agricultural sector. It entails forming clusters of woredas where trainings and large-scale

demonstrations are provided to farmers on new farming technologies, crop management

techniques, crop protection and soil fertility and health. Moreover, the initiative aimed to

ensure easier access to input financing through scaling the Input Voucher Sales system and

better and timely distribution of fertilizer and agrochemicals.

Table A5: First-Stage results using correct identification of improved maize varieties -
CGIAR-derived germplasm

Correct identification of im-
proved maize variety

(1)

No. years of DSM * Log(Proximity to
woreda town -KM)

-0.277***

(0.065)

Region FE Yes
Number of observations 314
Adjusted R2 0.269

F-statistic 18.240
P-value 0.000

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1. Standard errors (in parenthe-
sis) clustered at EA level. Control variables included are: No. years of DSM, Log (Proxim-
ity to woreda town (KM)), ACC, ACC*Log(Proximity to woreda town(KM)), Suitability
Index, Suitability Index*Log(Proximity to woreda town KM).
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Table A9: 2SLS results of correct identification on productivity and profitability

IHS:
Yield
(kg/ha)

Profits
(BIRR)

(1) (2)

C.I. 1.378*** 1,696.598*
(0.437) (984.461)

Region FE Yes Yes
Number of observations 314 289

Control mean 2778.929 2140.99

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1.
Standard errors (in parenthesis) clustered at EA level. IHS=
inverse hyperbolic sine transformation. Plot potential wetness
index, plot elevation and plot slope are expressed as devia-
tion from the EA mean. Control variables included are: No.
years of DSM, Log (Proximity to woreda town (KM)), ACC,
ACC*Log(Proximity to woreda town(KM)), Suitability Index,
Suitability Index*Log(Proximity to woreda town -KM). First-
stage results reported in Table A5 for column(1) and Table A8
for column(2).
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Table A13: First-stage results using predictions from Machine Learning application

Predicted values of:

Original
sample

Same Eas Same
Regions

Full sample

(1) (2) (3) (4)

No. years of DSM * Log(Proximity to woreda town -KM) -0.283*** -0.266*** -0.192** -0.192**
(0.081) (0.083) (0.087) (0.087)

Region FE Yes Yes Yes Yes
Obs. 313 820 956 1,121
Adjusted R2 0.269 0.203 0.164 0.167

F-statistic for IV 12.24 10.23 4.83 4.83
P-value 0.0007 0.0019 0.0299 0.0299

Notes: *** p-value<0.01, ** p-value<0.05, * p-value<0.1. Standard errors (in parenthesis) clustered at EA level. Control variables
included are: No. years of DSM, Log (Proximity to woreda town (KM)), ACC, ACC*Log(Proximity to woreda town(KM)), Suitability
Index, Suitability Index*Log(Proximity to woreda town KM).
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