The game behind oriented percolation - Université Toulouse 1 Capitole
Pré-Publication, Document De Travail Année : 2024

The game behind oriented percolation

Résumé

We characterize the critical parameter of oriented percolation on $\mathbb{Z}^2$ through the value of a zero-sum game. Specifically, we define a zero-sum game on a percolation configuration of $\mathbb{Z}^2$, where two players move a token along the non-oriented edges of $\mathbb{Z}^2$, collecting a cost of 1 for each edge that is open, and 0 otherwise. The total cost is given by the limit superior of the average cost. We demonstrate that the value of this game is deterministic and equals 1 if and only if the percolation parameter exceeds $p_c$, the critical exponent of oriented percolation. Additionally, we establish that the value of the game is continuous at $p_c$. Finally, we show that for $p$ close to 0, the value of the game is equal to 0.
Fichier principal
Vignette du fichier
percolation.pdf (762.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04786388 , version 1 (15-11-2024)

Identifiants

Citer

Avelio Sepúlveda, Bruno Ziliotto. The game behind oriented percolation. 2024. ⟨hal-04786388⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More