eCOALIA: Neocortical neural mass model for simulating electroencephalographic signals - Université de Rennes 1
Journal Articles SoftwareX Year : 2024

eCOALIA: Neocortical neural mass model for simulating electroencephalographic signals

Abstract

This paper introduces eCOALIA, a Python-based environment for simulating intracranial local field potentials and scalp electroencephalography (EEG) signals with neural mass models. The source activity is modeled by a novel neural mass model respecting the layered structure of the neocortex. The whole-brain model is composed of coupled neural masses, each representing a brain region at the mesoscale and connected through the human connectome matrix. The forward solution on the electrode contracts is computed using biophysical modeling. eCOALIA allows parameter evolution during a simulation time course and visualizes the local field potential at the level of cortex and EEG electrodes. Advantaged with the neurophysiological modeling, eCOALIA advances the in silico modeling of physiological and pathological brain activity.

Domains

Bioengineering
Fichier principal
Vignette du fichier
1-s2.0-S2352711024002942-main.pdf (1.86 Mo) Télécharger le fichier
1-s2.0-S2352711024002942-mmc1.pdf (167.47 Ko) Télécharger le fichier
Origin Publisher files allowed on an open archive

Dates and versions

hal-04774202 , version 1 (08-11-2024)

Licence

Identifiers

Cite

Elif Köksal Ersöz, Maxime Yochum, Pascal Benquet, Fabrice Wendling. eCOALIA: Neocortical neural mass model for simulating electroencephalographic signals. SoftwareX, 2024, 28, pp.101924. ⟨10.1016/j.softx.2024.101924⟩. ⟨hal-04774202⟩
0 View
0 Download

Altmetric

Share

More