index - Physique Statistique des Systèmes Complexes Access content directly

Last deposit, any kind of documents

T-cell cytotoxic function relies on the cooperation between the highly specific but poorly adhesive T-cell receptor (TCR) and the integrin LFA-1. How LFA-1-mediated adhesion may scale with TCR stimulation strength is ill-defined. Here, we show that LFA-1 conformation activation scales with TCR stimulation to calibrate human T-cell cytotoxicity. Super-resolution microscopy analysis reveals that >1000 LFA-1 nanoclusters provide a discretized platform at the immunological synapse to translate TCR engagement and density of the LFA-1 ligand ICAM-1 into graded adhesion. Indeed, the number of high-affinity conformation LFA-1 nanoclusters increases as a function of TCR triggering strength. Blockade of LFA-1 conformational activation impairs adhesion to target cells and killing. However, it occurs at a lower TCR stimulation threshold than lytic granule exocytosis implying that it licenses, rather than directly controls, the killing decision. We conclude that the organization of LFA-1 into nanoclusters provides a calibrated system to adjust T-cell killing to the antigen stimulation strength.

Continuer la lecture Partager

Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social interactions in the fish species Hemigrammus rhodostomus . We compare the results of our deep learning approach with experiments and with the results of a state-of-the-art analytical model. To that end, we propose a systematic methodology to assess the faithfulness of a collective motion model, exploiting a set of stringent individual and collective spatio-temporal observables. We demonstrate that machine learning (ML) models of social interactions can directly compete with their analytical counterparts in reproducing subtle experimental observables. Moreover, this work emphasizes the need for consistent validation across different timescales, and identifies key design aspects that enable our deep learning approach to capture both short- and long-term dynamics. We also show that our approach can be extended to larger groups without any retraining, and to other fish species, while retaining the same architecture of the deep learning network. Finally, we discuss the added value of ML in the context of the study of collective motion in animal groups and its potential as a complementary approach to analytical models.

Continuer la lecture Partager

We complete the kinetic theory of inhomogeneous systems with long-range interactions initiated in previous works. We use a simpler and more physical formalism. We consider a system of particles submitted to a small external stochastic perturbation and determine the response of the system to the perturbation. We derive the diffusion tensor and the friction by polarization of a test particle. We introduce a general Fokker–Planck equation involving a diffusion term and a friction term. When the friction by polarization can be neglected, we obtain a secular dressed diffusion equation sourced by the external noise. When the external perturbation is created by a discrete collection of N field particles, we obtain the inhomogeneous Lenard–Balescu kinetic equation reducing to the inhomogeneous Landau kinetic equation when collective effects are neglected. We consider a multi-species system of particles. When the field particles are at statistical equilibrium (thermal bath), we establish the proper expression of the fluctuation–dissipation theorem for systems with long-range interactions relating the power spectrum of the fluctuations to the response function of the system. In that case, the friction and diffusion coefficients satisfy the Einstein relation and the Fokker–Planck equation reduces to the inhomogeneous Kramers equation. We also consider a gas of Brownian particles with long-range interactions described by N coupled stochastic Langevin equations and determine its mean and mesoscopic evolution. We discuss the notion of stochastic kinetic equations and the role of fluctuations possibly triggering random transitions from one equilibrium state to the other. Our presentation parallels the one given for the kinetic theory of two-dimensional point vortices in a previous paper (Chavanis in Eur Phys J Plus 138:136, 2023).

Continuer la lecture Partager

Nanofluidics has a very promising future owing to its numerous applications in many domains. It remains, however, very difficult to understand the basic physico-chemical principles that control the behavior of solvents confined in nanometric channels. Here, water and ion transport in carbon nanotubes is investigated using classical force field molecular dynamics simulations. By combining one single walled carbon nanotube (uniformly charged or not) with two perforated graphene sheets, we mimic single nanopore devices similar to experimental ones. The graphitic edges delimit two reservoirs of water and ions in the simulation cell from which a voltage is imposed through the application of an external electric field. By analyzing the evolution of the electrolyte conductivity, the role of the carbon nanotube geometric parameters (radius and chirality) and of the functionalization of the carbon nanotube entrances with OH or COO− groups is investigated for different concentrations of group functions.

Continuer la lecture Partager

We discuss formal analogies between a nonlinear Schrödinger equation derived by the author from the theory of scale relativity and the equations of Brownian theory. By using the Madelung transformation, the nonlinear Schrödinger equation takes the form of hydrodynamic equations involving a friction force, an effective thermal pressure, a pressure due to the self-interaction, and a quantum potential. These hydrodynamic equations have a form similar to the damped Euler equations obtained for self-interacting Brownian particles in the theory of simple liquids. In that case, the temperature is due to thermal motion and the pressure arises from spatial correlations between the particles. More generally, the correlations can be accounted for by using the dynamical density functional theory. We determine the excess free energy of Brownian particles that reproduces the standard quantum potential. We then consider a more general form of excess free energy functionals and propose a new class of generalized Schrödinger equations. For a certain form of excess free energy, we recover the generalized Schrödinger equation associated with the Tsallis entropy considered in a previous paper.

Continuer la lecture Partager


Physique statistique Asymptotic behavior 9862Gq Transition vitreuse Cosmological constant Gravitation collapse Bose-Einstein Density Mass density Energy internal Gas Chaplygin General relativity Dark energy Competition Brownian motion Gravitational collapse Collective behavior Dark matter theory Cosmology Feedback Energy density Statistical mechanics Dark matter density Entropy 9880-k Chemotaxis 9536+x Cosmological model Kinetic theory Euler-Maclaurin Structure Condensation Bose-Einstein Current fluctuations Galaxy Gravitation Rotation 9535+d Effondrement gravitationnel Fermions Field theory scalar Catastrophe theory Phase separation Atmosphere Mouvement brownien Numerical calculations Stability Smoluchowski equation Scalar field Fokker-Planck Collisionless stellar-systems Einstein Computational modeling Collective motion Random walker Dissipation Dark matter fuzzy Turbulence Effect relativistic Expansion acceleration Quantum mechanics Thermodynamics Diffusion Fermion Black hole DNA Distributed Control TASEP Nonrelativistic Fermi gas Equation of state Critical phenomena Keller-Segel Pressure Collapse Collective behaviour Chemotaxie Computational modelling Formation Smoluchowski-Poisson Axion star Fermion dark matter Axion Hydrodynamics Halo Field theory scalar complex Scattering length Evaporation Wave function Marcheur aléatoire Dark matter Bose–Einstein condensates Gravitation self-force Quantum chromodynamics axion Dark matter condensation Energy high Dark matter halo Bethe ansatz Nanofiltration Denaturation 9530Sf


Number of files submitted


Number of notices submitted